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Abstract
Background: The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of
the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a
duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a
detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme
characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and
molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (Pantherophis slowinskii) and two
cottonmouths (Agkistrodon piscivorus) to complement previously existing mitochondrial genomes, and to provide an improved
comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence.

Results: We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional
origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific
evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions
have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced
dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the
shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs.

Conclusion: Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific
effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic
architecture. The among-lineage and among-gene variation in rate dynamics observed in snakes is the most extreme thus far
observed in animal genomes, and provides an important study system for further evaluating the biochemical and physiological basis
of evolutionary pressures in vertebrate mitochondria.
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Background
The vertebrate mitochondrial (mt) genome has been an
important model system for studying molecular evolu-
tion, organismal phylogeny, and genome structure.
Despite extensive molecular studies, little is known
regarding the ways in which genome architecture might
affect the various aspects of genome function and evolu-
tion (including replication, transcription, and RNA/pro-
tein function, as well as rates and patterns of nucleotide
evolution). Nevertheless, patterns linking mt genome
structure, function, and nucleotide evolution have begun
to emerge [1-3].

Among the most direct demonstrated links among
genome architecture, function and nucleotide evolution is
that relating the asymmetrical genome replication process
with gradients of transition substitutions in vertebrate
mitochondrial genomes [1-3]. Gradients of transition
mutations, arising from deamination mutations, are
observed due to the differential time regions of the mt
genome spend in an asymmetric mutagenic state during
genome replication (TAMS alternatively referred to as the
time spent in a single-stranded state, DSSH, [4-6], but there
is some controversy about this: see Additional file 1).
Thus, gradients of transition biases are dependent upon
the relative position of the functional origins of heavy and
light strand replication. In vertebrate mt genomes, the ori-
gin of heavy strand replication (OH) is thought to be
within the control region (CR), and the origin of light
strand replication (OL) in the tRNA cluster referred to as
the WANCY region (named for the five amino acids coded
for by these five tRNAs). Among transition classes in ver-
tebrate mt genomes, T→C light strand substitutions at
degenerate 3rd codon positions increase linearly with
increasing TAMS and C/T nucleotide frequencies at degen-
erate 3rd positions are good predictors of TAMS [4].

The mt genomes of snakes contain a number of character-
istics that are unusual among vertebrates, and represent
an ideal model for exploring potential links among
genome structure, function, and evolution. Snake mito-
chondrial genomes appear to have the highest evolution-
ary rates among vertebrates and contain truncated tRNAs
and other shortened genes [7,8]. All snake species sam-
pled to date, except the scolecophidian snakes Leptoty-
phlops dulcis, Ramphotyphlops australis, and Typhlops murius,
have a duplicated control region (CR2) between NADH
dehydrogenase subunit 1 (ND1) and subunit 2 (ND2), in
addition to a control region (CR1) adjacent to the 5'-end
of the 12s rRNA as it is in other vertebrates [7-11]. These
two control regions appear to undergo concerted evolu-
tion that acts to homogenize the nucleotide sequence of
each duplicate copy within a given genome [7-9]. The
functionality of these two control regions in transcription
and initiation of heavy strand replication is not clear, but

given that the nucleotide sequence of each is nearly iden-
tical, any functional features that are not dependent on
surrounding sequences should be similar. In contrast,
recent evidence suggests that initiation of heavy strand
replication may be distributed across a broad zone,
including cytochrome b (CytB) and NADH dehydroge-
nase subunit 6 (ND6) [12], indicating that CR2 may not
function as effectively in this role.

A number of interesting questions arise that might be
addressed through comparative analysis, including: (1)
does one or the other, or do both control regions function
as origins of heavy strand DNA synthesis? (2) does the
altered genome structure affect patterns of snake mt
genome molecular evolution? (3) when during snake evo-
lution did various features arise, and were any changes
synchronous? (4) do patterns of mt molecular evolution
vary at different depths of phylogeny? and (5) is there any
evidence or plausible rationale for selection as a causative
agent in generating differences in genomic structure and
molecular evolutionary patterns?

To investigate outstanding questions regarding snake
mitochondrial genome evolution, structure, and function,
we analyzed a dataset consisting of three new complete
snake mitochondrial genomes together with all eight pre-
viously published snake mitochondrial genomes that
were available at the time of this study, and 42 other ver-
tebrate mitochondrial genomes for comparative pur-
poses. The new snake genomes were obtained from one
Pantherophis slowinskii (Colubroidea: Colubridae; a corn
snake from Louisiana; previously Elaphe guttata), and
from two Agkistrodon piscivorus (Colubroidea: Viperidae;
the cottonmouth or water moccasin; one specimen from
Florida and the other from Louisiana).

Results
Brief summary of the new complete snake mitochondrial 
genomes
The gene contents of A. piscivorus and P. slowinskii mt
genomes are very similar to other snakes (Figure 1; for
detailed genome annotation see Additional file 2). As in
all known alethinophidian snake mt genomes, these spe-
cies have a presumably duplicated control region (CR2)
between ND1 and ND2, in addition to the original con-
trol region (CR1) present in all vertebrates adjacent to the
5' end of the 12s rRNA gene [7-9]. These genomes also
possess the translocated tRNALeu common to all alethi-
nophidian snakes sampled thus far (3' of CR2). In addi-
tion to an intact tRNAPro between CytB and CR1, P.
slowinskii has an apparent pseudo-tRNAPro gene (Ψ-tRN-
APro) between ND1 and CR2 (as does the previously
sequenced colubrid, Dinodon semicarinatus). In P. slowin-
skii, this Ψ-tRNAPro exactly matches the first 35 bases of
tRNAPro. In contrast, the intact tRNAPro of A. piscivorus
Page 2 of 14
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:123 http://www.biomedcentral.com/1471-2148/7/123
(and the only previously sequenced viperid, Ovophis oki-
navensis) is located between ND1 and CR2 (exactly the
location of Ψ-tRNAPro in the colubrids), and there is a 31
bp non-coding fragment between tRNAThr and CR1, where
tRNAPro is usually located. In O. okinavensis, this is clearly
a Ψ-tRNAPro, since these 31 bp are an exact match to the
CR1-proximal end of the complete tRNAPro, but in A. pis-
civorus the homology is much less clear. These alternative
positions of tRNAPro, Ψ-tRNAPro, and a previously noted
[7] duplication of tRNAPhe in O. okinavensis are the only
known mt genome gene rearrangements identified within
alethinophidian snakes.

Within a mt genome, the two copies of the CR in each
newly sequenced species are nearly identical (e.g., Api1
CR1 and CR2), as is typical for alethinophidian snakes
[7,8]. In P. slowinskii there is a single point mutation and
four extra nucleotides at one end of CR1, in Api1 there is
one indel plus 14 extra nucleotides on one end of CR1,
and in Api2 there are seven indels and two base changes
between the two control regions. Between Api1 and Api2,
CR1 differs by five indels and 19 point mutations,
whereas CR2 differs by three indels (two at the 5' end) and
18 point mutations.

Comparison of Agkistrodon piscivorus genomes
Polymorphisms were observed between the two A. pisciv-
orus genomes, Api1 and Api2, for all protein and rRNA
genes and for 14 of 22 tRNAs (see Additional file 2). The
12s and 16s rRNAs were the most conserved genes
between the two A. piscivorus individuals, with 2% and 3%
sequence divergence respectively (Figure 2A; Additional
file 2). Protein-coding genes differed more, up to 6.2% for
ND3 (Figure 2A; Additional file 2). Most differences
occurred at 3rd codon positions (Figure 2A; Additional file
2), as expected under predominantly neutral patterns of
divergence (for example, 57/58 substitutions in COX1
were at 3rd codon positions).

Within A. piscivorus, the control regions (e.g., CR1 in Api1
vs. CR1 in Api2) are as similar to each other as are the
rRNA genes, and more similar than the protein coding
genes (Figure 2A). This is in strong contrast to the normal
pattern of divergence between vertebrate species, for
which control region similarity is far less than that of pro-
tein-coding or rRNA genes, e.g., [13,14]. Between A. pisciv-
orus and the other viperid, O. okinavensis, the control
regions have 30% more differences (with indels included)
than the rRNAs, and are on par with divergence in the pro-

Annotated mitochondrial genome maps of Agkistrodon piscivorus and Pantherophis slowinskiiFigure 1
Annotated mitochondrial genome maps of Agkistrodon piscivorus and Pantherophis slowinskii. The two A. piscivorus 
samples (Api1 and Api2) have identical annotations except for minor variations in gene length. Labels of genes outside the circle 
refer to genes transcribed from the light strand, and names within the circle represent genes transcribed from the heavy 
strand.
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tein-coding genes (Figure 2B). If indels are included, the
control regions of these two species are nearly as different
as the average 3rd codon position (Figure 2B). The high
degree of similarity (low divergence) observed between
the CRs of the two A. piscivorus individuals is surprising,
and contrasts sharply with the high relative divergence of
CRs between O. okinavensis and A. piscivorus (Figure 2).

Phylogenetics
We present the phylogenetic tree estimate obtained by
ML, with NJ bootstrap values (BS) and posterior probabil-
ities (PP) for nodal support, which were generally high
(Figure 3). Our phylogeny estimate provides a well-

resolved and, in many cases, strongly-supported amniote
phylogeny that is consistent with previous molecular
studies. Differences between the ML topology (Figure 3),
and the topology based on Bayesian analysis (not shown)
were minor, and included an alternative placement of Bos
taurus among mammals, and alternative placements of
Gallus gallus and Rhea americana among birds. Addition-
ally, relationships among lizard taxa varied, with Cordylus
warreni estimated to be the sister lineage to all other liz-
ards, and an alternative placement of Varanus komodoensis.

All phylogenetic estimates provided an identical, well-
supported topology for relationships among snakes (Fig-
ure 3), and a summary of results concerning snake rela-
tionships is shown in Figure 4. The Scolecophidia
(Typhlopoidea), represented here by L. dulcis, formed the
sister group to all remaining snakes. Rather than finding

Maximum likelihood phylogeny for vertebrate taxa included in this studyFigure 3
Maximum likelihood phylogeny for vertebrate taxa 
included in this study.This phylogeny is based on all pro-
tein-coding and rRNA genes. Most branches have greater 
than 95% support for both NJ ML distance bootstrap and 
Bayesian posterior probability support (see Methods), and 
are not annotated with support values. Where support from 
either measure is less than 95%, the support values are indi-
cated by ratios, with the ML bootstrap support on top and 
the Bayesian posterior probability support below in italics, 
except for two nodes with less than 50% support by either 
measure, which are indicated by a hollow circle. Other than 
for these two nodes, support values less than 50% are indi-
cated with an asterisk (*).
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support for the Caenophidia (Acrochordus plus Colubroi-
dea [7,15]), we find strong support for Acrochordus as the
sister lineage to the Henophidia (including Cylindrophis).
Hereafter we will therefore operationally refer to this clade
including the Henophidia and Acrochordus as the "Acro-
Heno" clade, and we will refer to its sister clade as the Col-
ubroidea [16].

The snake and overall amniote phylogeny are strongly
supported by our analysis of this dataset, and we hence-
forth treat this phylogeny as accurate. We wish to empha-

size, however, that the consistency of the phylogenetic
results do not guarantee that they are, in fact, accurate.
Although for simplicity we present a single nucleotide
substitution model for the entire dataset we have analyzed
an expanded version of this dataset (with additional
unpublished snake and lizard mt genomes; with and
without inclusion of the rRNA genes) using complex par-
titioned models for each gene and codon position. The
results of this expanded (highly partitioned-model) phyl-
ogeny estimate (not shown) were essentially identical to
those presented here in terms of the placement of snakes
within squamates, and relationships among squamates.
We provide evidence below for extremely complex non-
stationary patterns of nucleotide substitution across
branches and mt genome regions, and have previously
identified asymmetric substitution gradients in mt
genomes [4] that may vary among species (e.g., primates
[3]). These latter patterns cannot be modeled using avail-
able phylogenetic programs (e.g., MrBayes [17]). We
expect our phylogenetic estimates here to represent a good
estimate of the relationships among mt genomes sam-
pled, and if minor inaccuracies in the topology have
occurred in our estimates, these changes should not sub-
stantially impact the qualitative conclusions of further
analyses (e.g., sliding window analysis, SWA) because a
majority of these later estimates are averaged over many
branches of the tree, and the dynamics we concentrate on
are quite dramatic and are likely to be obvious and quali-
tatively similar even with slight changes in the topology
estimate.

Nucleotide frequencies and control region functionality
In A. piscivorus and P. slowinskii mt genomes, as in other
vertebrates [5], nucleotides A and C are favored on the
light strand, particularly at 3rd codon positions. This bias
is probably related to elevated rates of deamination muta-
tions on the heavy strand incurred during replication (see
Background), and there is considerable variation in
nucleotide content among individual mt genomes (see
Additional file 2). Variation in snakes, even at 3rd codon
positions, is not exceptional compared to other groups,
and there is no clear snake-specific nucleotide bias evident
(see Additional file 2) or strong branch-specific, or gene-
specific nucleotide bias shifts across squamate mt
genomes that would explain our findings of dramatic
branch-specific and gene-specific rate dynamics.

Due to the simple linear relationship in most vertebrate
mt genomes between C/T ratios and TAMS predicted based
on the location of the (functional) control region, it is of
interest to determine whether there has been any clear
genetic effect of the duplicated control region in alethi-
nophidians. Exclusive use of one control region or the
other would be most strongly observable in ND1 (the
only protein-coding gene located between the two control

Hypotheses for the relative timing of alterations in mitochon-drial genome architecture and molecular evolution through-out snake phylogenyFigure 4
Hypotheses for the relative timing of alterations in 
mitochondrial genome architecture and molecular 
evolution throughout snake phylogeny. The topological 
relationships among snakes and branch lengths shown are 
the same as in Figure 3. Major groups of snakes are indicated 
along with the approximate diversification time of the Alethi-
nophidia.
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regions in alethinophidian snake mt genomes) because it
is the only protein-coding gene that would spend a sub-
stantially different amount of time in the asymmetric
mutagenic state (TAMS see Additional file 2) depending on
which control region is functional. Since the nucleotide
sequence of duplicate control regions is nearly identical
within each genome, however, it is also reasonable to con-
sider the possibility that both control regions are func-
tional.

To test these predictions about CR2 functionality, we
applied our MCMC analysis [3] to fit alternative models of
exclusive CR1 or CR2 usage, or mixed control region effect
(Table 1). The Akaike weights for the alternative individ-
ual models provide a measure of the degree to which a
control region is exclusively functional, while the weight
parameter in the mixed model represents the time-aver-
aged effect of mixed control region usage on the C/T
ratios. There is evidence for at least mixed CR2 usage in all
but one species (Cylindrophis ruffus). The evidence is good
for exclusive or nearly exclusive CR2 functionality in two
species (Acrochordus granulatus and Python regius), and for
a strong CR2 preference in A. piscivorus. The patterns
appear to be lineage-specific and evolutionarily labile
(i.e., strong preferences for a particular control region are
widely dispersed on the tree), which may indicate rapid
evolution of the strength of the replication-associated
substitution gradient (as suggested in primates [3]) or
rapid evolution of differential usage of the two control
regions. Species with ambiguous control region prefer-
ences may have mixed usage, may not have a strong
enough gradient to differentiate, or may have previously
switched usage and thus have not reached mutational
equilibrium.

Gene length and stability of truncated tRNAs in snakes
In snakes, all mt protein-coding genes (except COX1),
ribosomal RNAs, tRNAs, and individual CRs are shorter

than their counterparts in most lizards and most other
vertebrates (see Additional file 3). An exception to this is
Sphenodon punctatus, for which the control region, ATP8
(ATP synthase subunit 8) and the 12s rRNA are all shorter
than in snakes. With the increased sampling in this study,
it appears that while the tRNAs and proteins became
shorter prior to the divergence of all snakes, the tRNAs
became shorter still within the Colubroidea (Figures 4
and Additional file 3). Additionally, the rRNAs did not
become shorter in L. dulcis or the Acro-Heno clade, but are
dramatically shorter in the Colubroidea (Figures 4 and
Additional file 3).

The shorter length of tRNAs in snakes results mainly from
a truncated T-arm in the secondary structure (see also
[8,9]). In some tRNAs, the D-arm is also shorter, but to a
lesser extent than the T-arms. Although short tRNAs are
typically less stable than long ones, there is only a minor
effect of sequence length on secondary structure stability
(ΔG) in snake tRNAs. The cloverleaf structures of most
snake tRNAs are slightly less stable than their lizard coun-
terparts (see Additional file 2), but two tRNAs (tRNAIle,
tRNAMet) are actually more structurally stable in snakes
than in other squamates with longer tRNAs.

Spatio-temporal substitution rate dynamics across mt 
genes and genomic regions
To assess the difference in substitution rates among genes,
we fixed the topology (to that in Figure 3) and calculated
branch lengths based on rRNAs and on all protein-coding
genes (Figure 5). For the rRNAs, most other major amni-
ote groups have experienced similar amounts of total evo-
lution from their common ancestor with the amphibians
(i.e., the branch lengths from the root to the terminals are
similar), whereas the snake lineages stand out as unusual
in their apparently accelerated evolution (i.e., their excep-
tionally long root to tip branch lengths; Figure 5A). For
protein-coding genes there is much more variation across

Table 1: Results of mitochondrial genome replication model analyses

Individual model Mixed model

Species % 

Agkistrodon piscivorus 1179.2 (18%) 1178.0 (60%) 1179.0 (22%) 99%
Pantherophis slowinskii 1164.6 (29%) 1164.1 (47%) 1164.8 (24%) 54%
Dinodon semicarinatus 1167.1 (21%) 1166.2 (57%) 1167.1 (22%) 78%
Ovophis okinavensis 1252.7 (38%) 1252.6 (45%) 1253.5 (17%) 59%
Boa constrictor 854.5 (29%) 853.9 (50%) 854.8 (21%) 64%
Acrochordus granulatus 1245.0 (2%) 1241.5 (72%) 1242.5 (26%) 100%
Xenopeltis unicolor 1159.4 (31%) 1159.0 (45%) 1159.6 (24%) 50%
Python regius 1133.0 (1%) 1128.9 (72%) 1130.0 (26%) 100%
Cylindrophis ruffus 1129.8 (70%) 1132.6 (4%) 1130.8 (26%) < 1%

Negative log likelihood values and Akaike weights (in parentheses) for individual origin of replication models and the mixed model, along with the 
most likely CR2 preference parameter in the mixed model, for alethinophidian snakes.

OH
CR1 OH

CR2 O OH
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lineages (Figure 5B), although the snake clade has the
longest branches of any tetrapod group. Certain snake
branches (e.g., the branch leading to all snakes and to the
Alethinophidia) are disproportionately long compared to
branch lengths based on rRNAs (Figure 5). To evaluate
this further, branch lengths were calculated for different
genes and gene clusters and there was considerable varia-
tion among genes with respect to relative branch lengths
in early snake lineages (data not shown).

To qualitatively elucidate the spatio-temporal dynamics
in rates of substitution between gene regions that occur
across branches, we plotted the branch lengths derived
from rRNAs (which appear to have had little or no accel-
eration; e.g., Figure 5A) versus the branch lengths of vari-
ous genes and gene clusters (Figure 6). All gene pairs
generally appear to have highly correlated branch lengths
(Figure 6), but some branches are outside the main distri-
bution. Two branches consistently below the main distri-
bution in most comparisons are the terminal branch

leading to O. okinavensis and the branch leading to the
Acro-Heno clade (Figure 6); these two branches are also
disproportionally longer in the rRNA trees than in the
protein trees (Figure 5). These branches appear to have
experienced acceleration of rRNA genes well beyond the
mild accelerated evolution of rRNA that occurred along
the lineages leading to all snakes and to the Alethi-
nophidia.

To further evaluate the variation in spatio-temporal
dynamics of relative rates of substitution across the mt
genome, we used sliding window analyses of branch-spe-
cific and group-specific patterns of relative substitution
rates. Only one of these comparisons, that of the Acro-
Heno clade terminal branches, shows little variation of
standardized relative substitution rates across the genome
(Figure 7C). This suggests that the distribution of substi-
tutions across the mt genome of terminal lineages within
the Acro-Heno clade is nearly identical to the distribution
across the mt genome of other tetrapods, and that these
terminal snake lineages are not undergoing region or
gene-specific selection. The plots for terminal colubroid
branches are also fairly flat except for the downstream half
of the 16s rRNA (Figure 7B), which may be entirely attrib-
utable to acceleration of the 16s rRNA in O. okinavensis, as
discussed earlier.

Cross-referencing results from Figures 5, 6, 7, we can sum-
marize the apparent nucleotide evolutionary rate dynam-
ics in snake mt genomes as follows (see also Figure 4). The
branch leading to all extant snakes appears to have expe-
rienced accelerated evolution in the region starting near
the end of COX1 through COX2, ATP8, and somewhat
into ATP6, and also in the region including the end of
ND5, ND6, and CytB (and a rise in ND1). The COX1,
COX2, ATP8, and ND6 accelerations increased and were
stronger in the branch leading to Alethinophidia, while
the ND5 acceleration decreased, and a notable accelera-
tion of CytB also occurred. In the branch leading to the
Colubroidea, only the ND6 acceleration continued, but
new rate peaks arose in ND5, 12s rRNA, and the first part
of the 16s rRNA, followed by a strong dropoff in all gene-
specific acceleration in terminal colubroid lineages,
except in the end of 16s rRNA in O. okinavensis. In the
branch leading to the Acro-Heno clade, the accelerated
rates of evolution (in COX1, COX2, ATP8, and ND5
genes) observed along the branch leading to the alethi-
nophidians diminished (except for ND6 as in the Colu-
broidea), but new rate peaks arose in ATP6, COX3, ND3,
ND4L, and the latter half of the 16s rRNA. These punctu-
ated gene-specific accelerations were followed by the com-
plete elimination of all gene-specific signals of atypical
relative rate in terminal lineages within this Acro-Heno
clade. We find no evidence for a constant accelerated rate
of snake mt genome evolution. Instead, our analyses of

Phylograms based on the relative branch lengths for rRNA and protein-coding genesFigure 5
Phylograms based on the relative branch lengths for 
rRNA and protein-coding genes. Branch lengths were 
estimated on the topology of the ML phylogeny (Figure 3). 
Branch lengths on this constrained topology were estimated 
using all rRNA genes (A) or all protein-coding genes (B). The 
substitution rate scale is the same in both trees.
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Plot of branch lengths obtained from rRNA versus various genes and gene clustersFigure 6
Plot of branch lengths obtained from rRNA versus various genes and gene clusters. Branches leading to the most 
recent common ancestor of a group are labeled e.g. "Ancestor of All Snakes". Snake branches are indicated with filled circles, 
and non-snake tetrapod branches are indicated with an unfilled circle. The locations of selected snake branches are labeled (in 
bold) with arrows. Outlying non-snake branches are indicated and labeled in normal type. Genes and gene clusters shown are 
(A) COX1, (B) CytB, (C) COX2 + ATP6 + ATP8, (D) ND2, and (E) COX3 + ND3 + ND4L, (F) ND1, (G) ND4, (H) ND5, (I) 
ND6.
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rates and patterns of substitution underscore both the spa-
tial (gene-specific) and temporal (branch-specific) nature
of molecular evolutionary relative rate dynamics in snake
mt genomes.

Discussion
The three new complete snake mt genomes presented
here, together with previously existing vertebrate mt
genomes, provide a preliminary perspective on a complex
history of potentially adaptive mt genomic change in
snakes. Unusual changes in gene size and nucleotide sub-
stitution rates are associated with changes in mt genomic
architecture (Figure 4). Nevertheless, the changes in sub-
stitution dynamics cannot be directly explained by the
changes in mt genome architecture. Snake mt genome
evolution is most consistent with some type of broad
selective pressure on the efficiency and function of oxida-
tive metabolism in snakes early in their evolutionary his-
tory.

In mt genomes (particularly in vertebrates), the processes
of replication and transcription are not entirely function-
ally independent, and genome structural organization
plays a prominent role in both processes. The CR acts as
the origin of heavy strand replication, in addition to its
role as the promoter for both heavy and light strand tran-
scription [18]. Genome replication also depends on the
processing of light strand transcripts to produce short
primers required for heavy strand initiation of genome
replication (originating from the CR [19]). The regular
distribution of the tRNA genes throughout the mt genome
is functionally significant, and these play an important
role in RNA processing of polycistrons to yield mature
RNAs, transcription initiation and termination, as well as
initiation of light strand replication [18]. Collectively,
many functional ramifications are linked tightly to mt
genome architecture in vertebrates.

Mitochondrial genome size reduction due to gene short-
ening in alethinophidians is more than offset by the reten-
tion of their duplicate control regions. If size reduction is
caused by selective pressure, the long term retention of
dual CRs suggests that having both copies provide some
selective advantage. Although the duplicate control region
appears to function in heavy strand replication in at least
some snakes, there is considerable variation in CR usage
across snake lineages (Table 1). Thus, if the duplication
has been maintained by selection, control of replication
may not be the singular or primary selective driving force.

The possession of two functional control regions in most
snake mt genomes might be advantageous by increasing
the rate at which genome replication proceeds, and/or
increasing the overall number of genome copies per mito-
chondrion. Since the dual CRs essentially flank the rRNA
genes, they (along with adjacent tRNAs) could also plau-
sibly function to independently control rates of protein-
coding and rRNA gene transcription. Across snake species,
variation in the tRNAs flanking the CRs includes the trans-
location of tRNALeu (3' of CR2) and the duplication/trans-

Standardized substitution rates across the mitochondrial genome for selected branches or clustersFigure 7
Standardized substitution rates across the mitochon-
drial genome for selected branches or clusters. For 
each 1000 bp window applied to a set of branches, standard-
ized substitution rates were obtained by first dividing by the 
median window value for that branch, and then subtracting 
this value from the average across all non-snake branches. 
This helps to visualize regions of the genome that are evolv-
ing at slower or faster rates, with the average tetrapod rela-
tive rate being zero. Branches or branch sets shown are (A) 
the branch leading to the most recent common ancestor of 
all snakes and of the Alethinophidia; (B) the branch leading to 
the most recent common ancestor of the Colubroidea and 
the sum of all colubroid terminal branches; and (C) the 
branch leading to the most recent common ancestor of the 
Acro-Heno clade and the sum of all Acro-Heno clade termi-
nal branches.
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location/truncation of tRNAPro. In vertebrates, tRNALeu

has been shown to decouple rates of rRNA and mRNA
transcription by acting as a terminator of ~95% of heavy
strand transcripts (leading to ~20-fold higher rRNA vs.
mRNA levels; [18]). Considering the ectothermy of
snakes, transcriptional decoupling via independent con-
trol regions could provide a more direct means of counter-
ing thermodynamic depression of enzymatic rates at low
temperatures.

Independent CR duplications have also been identified in
eels [20], frogs [21], birds [22,23], and lizards [24,25].
Our results (and additional unpublished data) suggest
that the dramatic shifts in rates and patterns of molecular
evolution in snakes represent a unique phenomenon that
we do not expect to be necessarily associated with CR
duplication, but rather more likely associated with selec-
tion for mitochondrial function. Nevertheless, these inde-
pendent duplications may be useful to test the
consequences of duplication on mutational processes.

Concerted evolution in and around the duplicate control 
regions
The two control regions clearly undergo concerted evolu-
tion to maintain reciprocal homogeneity between control
regions within a genome [7-9], presumably through gene
conversion. Interestingly, an apparently nonfunctional
partial (or pseudo) proline tRNA (Ψ-tRNAPro) in colubrid
mt genomes also appears to be maintained by concerted
evolution (Figure 1). The gene conversion process that
homogenizes the control region may also occasionally
pick up extra DNA, making tRNAPro, or part of it, prone to
duplication at this location. The existence of a duplicate
tRNAPhe between CR2 and tRNALeu in the viperid O. oki-
navensis [7] suggests that frequent gene duplication adja-
cent to the CRs may occur (these two tRNAPhe differ by
only 3 of 64 bp; implying either concerted evolution or
recent duplication). The concerted evolution of these
tRNAs could be explained by a tendency for gene conver-
sion events involving the duplicate control regions to
extend into the homologous flanking tRNA regions.

Another point of interest concerning gene conversion that
arises from this study is a preliminary indication of differ-
ential evolutionary processes operating on the CRs within
versus between species. Vertebrate mitochondrial control
regions typically evolve very rapidly, and this is the case in
a comparison of the two viperid species (O. okinavensis
and A. piscivorus) in which CRs from these species are (on
average) approximately as divergent as the fastest evolving
positions within the mt genome, third codon positions
(Figure 2B). In contrast, the two A. pisvicorus genomes,
Api1 and Api2, have surprisingly similar CRs between
individuals (Figure 2A; Additional file 2), comparable to
the similarity between rRNA genes, among the slowest

evolving regions in the mt genome. A previous study on
viperid snakes also showed slow within-species CR evolu-
tionary rates [26], and other studies have demonstrated
particularly slow intra-species rates and differential rates
of CR evolution operating within versus between species
in birds [27] and fish [28].

In this study we have found a great deal of rate heteroge-
neity among genes, so it is certainly possible that the nor-
mally unconserved control regions have become suddenly
critical and conserved in A. piscivorus. Alternatively, it is
plausible that the complex (and poorly understood) proc-
ess of gene conversion of CRs within a genome may also
alter rates of CR evolution within species through a yet
unknown process of gene conversion that may involve
intragenomic (or even intergenomic) recombination.

Comparative rates of molecular evolution
Previous studies have suggested that snake mt genomes
have an accelerated rate of evolution [7,8]. Our results
suggest this general conclusion is an oversimplification of
a much more complex scenario, and that rates of snake mt
genome evolution incorporate broad temporal (branch-
specific) and spatial (gene and gene region-specific)
dynamics. Branches early in snake evolution appear to be
associated with dramatically elevated evolutionary rates
and extreme relative rate dynamics across the mt genome
(Figure 4). In contrast, terminal branches appear to have
patterns of mt genome evolution that are strikingly simi-
lar to other (non-snake) vertebrates.

In support of a hypothesis involving selection for overall
oxidative metabolic function, the accelerated rates of
molecular evolution in snakes appear to depend greatly
on gene function, with most ND subunits accelerating
only slightly and occasionally, while COX, ATP, CytB, and
rRNA evolutionary accelerations are dramatic and punctu-
ated. The roles of these proteins (and the mitochondria in
general) in energetics via oxidative phosphorylation are
well known, and it may be that a single causative agent
accompanying the diversification of snakes that dramati-
cally altered metabolic demand, or led to a fluctuation in
metabolic demand, was responsible for large-scale
changes in selective pressure on these proteins.

Conclusion
Snake mitochondrial genomes present a rare opportunity
to investigate the evolutionary interactions and ramifica-
tions that link genome architecture, molecular evolution,
and multi-level molecular function. Available evidence
points to selective pressures acting at many hierarchical
levels within snake mt genomes, and at different times
during snake evolution, leading to diverse, dramatic, and
broad-scale changes in the genome. Interestingly, some
consequences of this adaptive shift appear to have dimin-
Page 10 of 14
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ished over time (e.g., accelerated evolutionary rates of
COX and other genes), whereas others appear to continue
in extant snakes (i.e., the effects of control region duplica-
tion on mutation gradients, replication, and potentially
transcription, and remnant functional consequences of
short and highly substituted genes). Although the precise
causes are unknown, this outstanding example of an
apparent punctuated adaptive shift involving multiple
aspects of genome architecture evolution provides an
important comparative tool for the study of vertebrate mt
genome evolution.

Methods
Sampling, sequencing and annotation
DNA was extracted from vouchered specimens available
at the Louisiana State University Museum of Natural Sci-
ence (LSUMZ) and the University of Central Florida
(CLP). The Agkistrodon piscivorus (cottonmouth or water
moccasin; Viperidae) specimens were from Louisiana,
USA (LSUMZ-17943) and from Florida, USA (CLP-73).
We refer to these as Api1 (Louisiana specimen) and Api2
(Florida specimen). The Pantherophis slowinskii (corn
snake; Colubridae) specimen was from Louisiana, USA
(LSUMZ- H-2036). The genus Pantherophis [29] was
recently erected to contain a clade of species formerly allo-
cated to Elaphe. The species P. slowinskii was formerly con-
sidered Pantherophis (Elaphe)guttatus, and was recently
recognized as a distinct species [30]. Details of molecular
laboratory methods (e.g., PCR, cloning, sequencing),
genome annotation [31], and accession numbers are pro-
vided in Additional files (see Additional files 2 and 4).

Phylogenetic and sliding-window analyses
In addition to the three new snake mt genome sequences,
the sequence dataset used included all eight snake mt
genomes available at the time of the study, and 42 addi-
tional taxa for comparative purposes, including heavy
sampling of birds, mammals (mostly primates), and liz-
ards (species scientific names and access numbers are
given in Additional file 2). Sequences of protein-coding
and rRNA genes were aligned using ClustalX [32], fol-
lowed by manual adjustment. Protein-coding genes were
first aligned at the amino acid level, and then the nucleo-
tide sequences were aligned according to the correspond-
ing amino acid alignment. The alignment of rRNAs
contained a small number of sites (corresponding to the
loop-forming structures of the rRNAs) with somewhat
ambiguous alignments only among major tetrapod line-
ages. Since we wanted to compare estimates of mitochon-
drial gene evolutionary rates and patterns, we chose not to
exclude any sites of the alignment. This was also justified
by preliminary phylogenetic estimates that suggested the
incorporation of these few potentially ambiguous sites
did not affect phylogenetic results. The main phylogeny
presented here was inferred using the concatenated

nucleotide sequence of all 13 protein-coding and two
rRNA genes by maximum-likelihood (ML) analysis in
PAUP 4.0 beta10 [33]. This analysis used the GTR + Γ + I
model of evolution, the best-fit model under all criteria in
ModelTest [34].

Support for this topology was evaluated in two ways: (1)
based on 1000 NJ bootstraps (in PAUP) with ML dis-
tances calculated under the same model as above, but
with down-weighted synonymous sites to avoid satura-
tion problems (rRNAs relative weight = 5 and 1st, 2nd, and
3rd codon positions relative weights = 4, 5, and 1) and (2)
based on Bayesian posterior probability support esti-
mated by conducting two simultaneous independent
MCMC runs conducted for 106 generations (with the first
400,000 generations of each run discarded as burn-in)

using a GTR + Γ + I model of evolution (in MrBayes 3.1
[17]). The burnin period was determined by visual assess-
ment of stationarity and convergence of likelihood values
between the chains. To analyze nucleotide substitution
rate variation in different lineages and different genes,
branch length estimates were separately calculated under

the GTR + Γ + I model for different genes (COX1, ND1,
ND2, ND4, ND5, CytB) and gene clusters (COX2 + ATP8
+ ATP6, and COX3 + ND3 + ND4L; each comprising
groups of individually short genes adjacent along the mt
genome) using the ML topology and PAML [35]. To fur-
ther analyze fluctuations in nucleotide substitution rates,
we conducted sliding window analyses (SWA) on the phy-
logenetic dataset. The program Hyphy [36] was used to
estimate branch lengths (estimated numbers of substitu-
tions) for 1000 bp windows. SWA was conducted using
the GTR model with global parameter estimation and top-
ological relationships specified based on the ML tree esti-
mate, with a window slide of 200 bp. Based on
preliminary trials, the size of the window and slide length
were chosen to minimize noise observed with shorter
windows, but to allow differentiation of patterns in differ-
ent regions. To compare patterns of substitution across
the mitochondrial genome for select branches or groups
of branches, we first divided substitution estimates for
each window by the median substitution rate across all

windows. Since branch lengths are estimates of δbtb (the

branch-specific substitution rate times divergence time)
this procedure estimates a ratio of substitution rates,

, where  is the branch- and window-specific

substitution rate, and  is the branch-specific substitu-

tion rate in the median window. To evaluate whether the

δ δ ξ
b
w

b/ δb
w

δ ξ
b
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windows had relative rates that were slower or faster than
expected, we took the substitution rate ratio from the set
of all branches in the non-snakes (NS) as a standard. This
was then subtracted from the branch-specific ratio to
obtain a "standardized substitution

rate", . When relative rates of substitu-

tion are distributed similarly across the mt genome, in
comparison with NS, this standardized rate comparison
approaches zero.

tRNA structure
The secondary structures of squamate tRNAs were deter-
mined under the guidance of the mammalian tRNA clo-
verleaf structures [37] and the tRNAscan program [38],
and then used to modify tRNA alignments by hand
(tRNASer [AGY] was not included in these analyses
because it does not form a cloverleaf structure). To deter-
mine the relative stabilities of the tRNA secondary struc-
tures, we calculated the energy (ΔG) of the cloverleaf
structure using the Vienna Package version 1.4 [39].

Analysis of control region functionality
The calculation of TAMS differs depending on whether CR1
or CR2 is functional, but only for the genes that are posi-
tioned between the two control regions, the two rRNAs
and ND1 (see Additional file 2). Based on previous work,
the light strand C/T ratio at synonymous two-fold and
fourfold redundant 3rd codon positions is expected to
increase linearly with TAMS, so we used this prediction to
determine whether there was any evidence for activity of
CR1 or CR2 in initiating heavy strand replication. We
implemented a slightly modified version of the MCMC
approach in [3] to estimate the most likely slope and
intercept of the C/T ratio gradient depending on the calcu-
lated TAMS at every site. We applied these calculations
using TAMS from CR1 and CR2, and also separately calcu-
lated the slope and intercept for the most likely weighted
average TAMS for the two control regions. Other than the
addition of the weighting parameter, all details of the
Markov chain were as in [3]. Relative support for alterna-
tive hypotheses was determined using Akaike Information
Criterion (AIC) and Akaike weights [40,41].
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rRNA, tRNA : ribosomal RNA, transfer RNA

mt: mitochondrial

OH: origin of heavy strand replication

CR, CR1, CR2: control region, control region 1, control
region 2

OL: origin of light strand replication

ND#: NADH dehydrogenase subunit #

COX#: Cytochrome C oxidase subunit #

DssH: Duration of time spent single-stranded by the heavy
strand during replication

TAMS: Time spent in an asymmetric mutagenic state during
replication

C, T, A, G: cytosine, thymine, adenine, guanine
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