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The drivers of tropical speciation
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Since the recognition that allopatric speciation can be induced by
large-scale reconfigurations of the landscape that isolate formerly
continuous populations, such as the separation of continents by plate
tectonics, the uplift of mountains or the formation of large rivers, land-
scape change has been viewed as a primary driver of biological diver-
sification. This process is referred to in biogeography as vicariance1.
In the most species-rich region of the world, the Neotropics, the sun-
dering of populations associated with the Andean uplift is ascribed
this principal role in speciation2–5. An alternative model posits that
rather than being directly linked to landscape change, allopatric spe-
ciation is initiated to a greater extent by dispersal events, with the
principal drivers of speciation being organism-specific abilities to
persist and disperse in the landscape6,7. Landscape change is not a
necessity for speciation in this model8. Here we show that spatial and
temporal patterns of genetic differentiation in Neotropical birds are
highly discordant across lineages and are not reconcilable with a model
linking speciation solely to landscape change. Instead, the strongest
predictors of speciation are the amount of time a lineage has persisted
in the landscape and the ability of birds to move through the land-
scape matrix. These results, augmented by the observation that most
species-level diversity originated after episodes of major Andean uplift
in the Neogene period, suggest that dispersal and differentiation on
a matrix previously shaped by large-scale landscape events was a major
driver of avian speciation in lowland Neotropical rainforests.

In the species-rich Neotropics, the origins of biodiversity are usually
linked to changes to the Earth’s landscape over geological time2–5,9,10. Pal-
aeogeographic studies indicate that Andean mountain building during
the Neogene catalysed tumultuous changes in the lowlands, including
formation of the Amazon River system, closure of the Isthmus of Panama,
and the isolation of humid lowland forests east and west of the Andes
by montane habitats and the aridification of the Caribbean lowlands in
northern South America4. These large-scale landscape changes are hypoth-
esized to have driven speciation by fragmenting species distributions that
were formerly continuous, a process that can generate congruent spatial
and temporal patterns of genetic differentiation in co-distributed lineages,
especially for lineages with similar ecological characteristics. Bolstering
support for the importance of landscape change driving isolation in this
region, time-calibrated phylogenies of a taxonomically diverse group of
organisms encompassing a broad range of ecologies and dispersal abil-
ities indicate that many modern Neotropical lineages originated during
time periods associated with major reconfigurations of the landscape,
presumably signifying a shared response to landscape history9.

An alternative hypothesis is that the principal effect of Andean mountain
building in the Neogene on speciation was the formation of a geographi-
cally structured landscape matrix upon which subsequent diversification

occurred. Within the humid lowland forests of the Neotropics the landscape
contains mountains and rivers that restrict the movement of individuals
across them (we use the term dispersal for these movements). Under this
model, lineages with a longer occupation of the landscape have a
higher likelihood of dispersing across geographical barriers and diver-
sifying. In addition, lineages with lower dispersal ability are expected to
accrue genetic differentiation between populations at a relatively higher
rate than more dispersive lineages, leading to a higher rate of speciation7.
In this model, lineage-specific attributes are predicted to be the primary
determinants of species diversity within lineages11.

These two models of diversification in the Neotropics have been dif-
ficult to evaluate empirically because: (1) large-scale comparative data
are needed from multiple co-distributed lineages; (2) each lineage needs
to be sampled densely across its range to identify phylogeographic breaks
and to estimate within-lineage species diversity; (3) the sampled lineages
must encompass a range of quantifiable dispersal abilities and ecological
guilds in order to test how these variables affect speciation; and (4) the
phylogenetic position of each lineage must be known to approximate lin-
eage age. We assessed the relative support for these two models in explain-
ing standing species-level variation by characterizing recent large-scale
diversification using a comparative phylogeography data set containing
over 2,500 individuals from 27 widespread bird lineages in the species-
rich Neotropics (Supplementary Table 17 and Figs 1 and 2). Biological spe-
cies often represent an inaccurate estimate of the true diversity in avian
rainforest communities because the alpha taxonomies of most groups still
require formal revision using modern methods. To minimize biases asso-
ciated with species limits based on current taxonomy, we defined each
lineage as all populations of a given taxon that represent, on the basis of
available evidence, a monophyletic group, regardless of whether the lineage
is currently treated as a single species or as a species complex that includes
several closely related species. By examining relatively recent diversifica-
tion at the phylogeographic scale, where extinction is less likely to have
occurred, we minimized the confounding effects of extinction. Extinction
is difficult to account for analytically and typically increases with time12.

The Andes, the Isthmus of Panama and large rivers of the Amazon
Basin (the Amazon, Madeira and Negro rivers) are prominent features
of the Neotropical landscape that interrupt the distributions of the 27
focal lineages to varying degrees (Fig. 1 and Supplementary Figs 1–27).
The effect of the landscape on diversification is evident taxonomically,
with distinct taxa usually located on opposite banks of Amazonian rivers,
the Isthmus of Panama and the Andes. Biogeographers often treat regions
delimited by these dispersal barriers as areas of endemism because of
the accumulation within them of distinct taxa having common distri-
butional ranges (Extended Data Fig. 1). The exact time of origin of the
dispersal barriers separating these areas is debated4,5,13–16, but most data
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indicate that they achieved their modern configuration during the Neogene
(23–2.6 million years (Myr) ago)4. Subsequent landscape changes during
the Quaternary period (2.6 Myr ago to present) were marked by fluctua-
tions in forest cover driven by glacial–interglacial cycles4,17, but Amazonia
remained forested even during the cooler and drier glacial periods18.

Genealogies of the 27 lineages exhibited substantial variation in the
timing and spatial sequence of diversification associated with barriers
(Fig. 3a, Supplementary Figs 1–27 and Supplementary Table 17). To test
whether divergence events across the major dispersal barriers structuring
these genealogies were consistent with a single episode of vicariance asso-
ciated with barrier formation we used hierarchical approximate Bayesian
computation (hABC)19, which is able to account for differences in genetic
drift among the 27 lineages (Extended Data Fig. 2 and Supplementary

Tables 3–7). Instead of supporting a single event, the genetic data were
consistent with 9 to 29 divergence events across the Andes, with each
event occurring at a different time (Bayes factor (Bf)50 when comparing
s2/ �t # 0.01 and s2/�t . 0.01; Extended Data Fig. 2 and Supplementary
Information). The timing (t) of most of these divergence events was in
the Pleistocene. These results suggest the Andean uplift did not have a
direct cross-lineage effect on biological diversification via vicariance, but
rather had an indirect role in divergence by acting as a semi-permeable
barrier to post-uplift dispersal. We corroborated the above result of
asynchronous cross-Andes divergences (Bf 5 0.13) using hABC ana-
lyses on multi-locus data sets (that is, .100 loci) generated from target
capture and next-generation sequencing on a selected sample of lineages,
indicating the pattern was robust to possible bias associated with infer-
ring population history from single-locus data (Extended Data Fig. 3
and Supplementary Information). The numbers of temporally spaced
events also did not support synchronous divergence across the Isthmus
of Panama and the Amazonian rivers (Isthmus: 1–7 divergence events,
Bf 5 0.00; Amazon River: 1–3 divergence events, Bf 5 0.01; Negro River:
8–17 divergence events, Bf 5 0.63; Madeira River: 3–8 divergence events,
Bf 5 0.66; Extended Data Fig. 2 and Supplementary Information), a
pattern consistent with the permeability of these barriers20.

We next examined to what extent speciation was influenced by the
histories and ecologies of the 27 lineages. We selected two historical and
two ecological summary variables previously implicated in avian diver-
sification: (1) lineage age (a measure of evolutionary persistence), which
we measured as the timing of a lineage’s divergence from its sister taxon
(stem age); (2) ancestral area of a lineage’s origin (east or west of the
Andes); (3) foraging stratum, a measure of dispersal ability linked to the
behaviour of birds (canopy, high dispersal ability or understorey, low
dispersal ability); and (4) niche breadth (an indirect measure of dispersal
ability based on habitat preference), estimated from climate-based ecol-
ogical niche models (Supplementary Information). We then used phy-
logenetic generalized least-squares analyses to test the effects of these
variables on the number of species within each of the 27 lineages, as defined
by a coalescent-based Bayesian species-delimitation method (Supplemen-
tary Information and Extended Data Fig. 4).

We found that a lineage’s intrinsic ability to persist in the landscape
was an important driver of speciation. The number of species within a
lineage was strongly predicted by lineage age (DAICc 5 6.9586, where
DAICc refers to the change in the sample size-corrected Akaike informa-
tion criterion when a predictor variable was removed from the model
containing all predictor variables; Fig. 3b, Table 1 and Supplementary
Tables 12 and 16). This relationship is consistent with the idea that the
longer a lineage occupies the landscape the more opportunities it has
to disperse and differentiate across geographical barriers. Although a
sequence of vicariant events acting on a set of co-distributed lineages
could produce a similar association between lineage age and species diver-
sity, most of the species diversity we identified originated during the
Pleistocene epoch (Fig. 2 and Supplementary Table 17; n 5 142; 75%
of species # 2.6 Myr ago), after the Neogene formation of the landscape
matrix, but before the Last Glacial Maximum (26,500–19,000 years ago).
At deeper phylogenetic timescales, a positive association between diver
levels and lineage age has been used to explain greater species richness
in areas having had more time to accumulate species21. It remains an open
question whether the phylogeographic-scale processes we documented
scale up to shape large-scale biodiversity patterns. To put our results into
a broader temporal and spatial context would require a comparison of
recent diversification events between temperate and tropical lineages22.

Ecologically, we found that foraging stratum had a significant effect
on species diversity (DAICc 5 4.0122; Fig. 3, Table 1 and Supplementary
Tables 12 and 16), with the more dispersal-limited lineages restricted to
the forest understorey exhibiting significantly higher species diversity than
the more dispersive canopy lineages. This result corroborates previous
work that documented the greater dispersal ability of canopy species, pre-
sumably due to the physiognomy of the canopy and the patchier distri-
bution of food resources within it23,24. The ability of individuals to move

Figure 2 | Gene tree composed of 27 lineages of Neotropical birds, with
species at tips inferred using a Bayesian coalescent model. An exemplar
taxon for each lineage is illustrated30. Yellow bars correspond to the 95% highest
posterior density for divergence times of each species. The Quaternary (2.6 Myr
ago–present) and the Neogene (23–2.6 Myr ago) periods are shaded in grey
and light blue, respectively. Mean stem ages for 25 of the lineages occurred
within the Neogene and for two lineages within the Quaternary. Outgroups for
each lineage are not included in the depicted phylogeny.
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Figure 1 | Sampling within the landscape matrix. Sampling points of the 27
bird lineages (circles) and prominent dispersal barriers within the landscape
matrix, including the Andes (and associated arid habitats in the Caribbean
lowlands of South America), the Isthmus of Panama and three major rivers in
the Amazon Basin (Amazon, Negro and Madeira Rivers).
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through the landscape matrix has long-term consequences for the accu-
mulation of diversity within lineages, assuming the lineage persists over
evolutionary timescales.

Studies of biological diversification have sought a general mechanism
to explain the origins of the extraordinary diversity in Amazonia2,4,25, with
most concluding that landscape change by geological, climatic or marine
forces is the principal driver of speciation. Using a comparative phylo-
geographic approach and incorporating the variability in ecology and
evolutionary history among co-distributed lineages, we found that genetic
patterns in birds are not easily reconcilable with a model in which diver-
sification is a direct response to landscape change. Instead of finding the
predicted shared response among lineages, our comparative analysis,
and phylogeographic studies of other Amazonian organisms26, found
extensive spatial and temporal discordance in genetic differentiation to
be the norm. For example, divergence levels across the Andes were con-
sistent with 9 to 29 distinct divergence events (Extended Data Fig. 2).
Although highly suggestive of multiple dispersal events, this variation

could be explained by a single vicariant event associated with the Andean
uplift if the dispersal restrictions imposed by the barrier were heavily
dependent on dispersal ability, such as was reported for a taxonomi-
cally diverse group of marine organisms isolated by the formation of the
Isthmus of Panama27. In a similar fashion, the emerging Andes could have
first become a barrier for bird lineages with low dispersal abilities, with
fragmentation of the distributions of more dispersive lineages occur-
ring later. However, we detected no significant associations between
dispersal abilities and divergence times across the Andes and the Isthmus
of Panama that would support a model of ecologically mediated vicar-
iance for these barriers (Fig. 3a and Supplementary Tables 13 and 14).
For the Amazonian rivers, only part of the variance in divergence levels
was explained by dispersal ability (Supplementary Table 15) because there
were multiple independent divergence events within the understorey
lineages (Fig. 3a and Extended Data Fig. 2). Thus, the wide range of diver-
gences across rivers cannot be reconciled with a model of ecologically
mediated vicariance. As the stem ages of 25 of the 27 lineages we exam-
ined date to the Neogene, we do not reject the possibility that the initial
geographical isolation of populations at deeper phylogenetic scales was
due to vicariance associated with the Andean orogeny or with the emer-
gence of other landscape features.

The accumulation of bird species in the Neotropical landscape occurred
through a repeated process of geographical isolation, speciation and expan-
sion, with the amount of species diversity within lineages influenced by
how long the lineage has persisted in the landscape and its ability to dis-
perse through the landscape matrix. A growing body of phylogenetic
evidence indicates that average rates of avian diversification have been
relatively constant in the Neotropics28,29 and, consistent with this, our
results show that tumultuous changes to the South American landscape
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Figure 3 | Asynchronous divergence times across barriers and the influence
of lineage-specific traits on species diversity. a, The variation in divergence
times across barriers cannot be attributed to ecologically mediated
vicariance. There was no significant association between dispersal ability
and divergence times across the Andes and the Isthmus of Panama. Only part of
the variance in divergence times across rivers was attributable to dispersal
ability. Divergence levels across Amazonian rivers were generally shallower
in canopy birds, but understorey birds diverged multiple times across each
river. Circles represent mean estimates and bars represent the 95% highest
posterior density. Colour coding of the points corresponds to the foraging
stratum of each lineage: understorey, orange; canopy, green. Vertical hashed
lines at 2.58 million years represent the transition between the Neogene (to the
right of line) and Quaternary (to the left of line). b, Within-lineage species
diversity increases with lineage (stem) age. Solid lines represent the fit of the
data to a model using phylogenetic generalized least-squares analyses. Black
points and line correspond to mean stem ages, and the purple points and lines
correspond to the high and low values of the stem age 95% highest posterior
density. c, Box plot illustrating that species diversity is significantly higher in the
understorey lineages than in forest canopy lineages. The box plot shows the
first, second and third quartiles, the lines are the 95% confidence intervals and
the circles represent outliers. Significant associations in panels a, b and c are
supported by phylogenetic generalized least-squares analyses shown in Table 1
and Supplementary Tables 9–15. Statistical tests were performed independently
on each data set except for divergences across rivers; all rivers were combined
into a single analysis.

Table 1 | Phylogenetic generalized least-squares regression showing
the effects of historical and ecological variables on species diversity
Effect Estimate Standard error t value P DAICc

Lineage age 0.1187 0.0283 4.1907 0.0004 6.9586
Foraging
stratum

0.5188 0.2025 2.5623 0.0178 4.0122

Ancestral origin 20.1921 0.2023 20.9495 0.3527 21.9546
Niche breadth 1.0097 1.0658 0.9473 0.3538 21.9595

Output is from the full model and DAICc refers to the change in AICc when each predictor variable was
removed from the full model. Species diversity was square root transformed and (stem) lineage age is in
units of millions of years. Full model AICc 5 43.7365; adjusted R2 5 0.567; f (d.f.) 5 9.52(4, 22); P ,0.001;
n 5 27 lineages. Model output for foraging stratum and ancestral origin corresponds to the comparison
of the reference level (foraging stratum, understorey; ancestral origin, east of the Andes) for each
categorical variable.
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may not have led to marked pulses in speciation. Correlations between
lineage ages and the Andean uplift or Quaternary climatic events reported
elsewhere9,25 are suggestive of landscape and environmental change being
a component of the diversification process, but the details of how, when
and to what extent these changes drove the origin of standing species-
level diversity remain unclear. Our phylogeographic-scale analysis indi-
cated most species-level variation postdates the Andean uplift, and our
results contribute to a growing number of studies reporting dispersal
events as the primary initiators of geographical isolation and speciation6.
Our results also have an important conservation implication. Anthro-
pogenic alterations of the landscape matrix by deforestation and climate
change affect not only the evolutionary persistence of rainforest line-
ages, but also the occurrence of cross-barrier dispersal events within
lineages that lead to new biological diversity.

Online Content Methods, along with any additional Extended Data display items
andSourceData, areavailable in theonlineversionof thepaper; referencesunique
to these sections appear only in the online paper.
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Extended Data Figure 1 | Areas of endemism for lowland rainforest birds in Central and South America. A full description of the geographical limits of each
area is available in the Supplementary Information.
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Extended Data Figure 2 | hABC output showing estimates of mean
and dispersion indices of population divergence times and times of
co-divergence pulses inferred from mitochondrial DNA. The left panels
illustrate the approximate joint posterior estimates of s2/ �t, the dispersion index
of t and �t, the mean of t across n population pairs, where ti is the divergence
time of the ith of n population-pairs and �t is scaled in coalescent time units of
4 �N generations where �N is the mean effective population size averaged across

population-pairs. The right panels depict the posterior distributions of the
relative times of the co-divergence pulses across barriers, scaled by coalescent
units. The shading intensity of each distribution is conditional on the posterior
probability of y, the associated number of different pulses of co-divergence
across each barrier. Sample sizes for each barrier: Andes, n 5 29; Isthmus of
Panama, n 5 14; Amazon River, n 5 14; Negro River, n 5 17; Madeira River,
n 5 14.
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Extended Data Figure 3 | hABC output showing estimates of mean and
dispersion indices of population divergence times across the Andes inferred
from ultraconserved elements (UCEs). Left panel illustrates the approximate
joint posterior estimates of s2/ �t, the dispersion index of t and �t, the mean of t
across n population-pairs, where ti is the divergence time of the ith of n

population-pairs and �t is scaled in coalescent time units of 4 �N generations
where �N is the mean effective population size averaged across population-pairs.
The right panel depicts the posterior distribution of the relative times of the co-
divergence pulses across the Andes (n 5 5) scaled by coalescent units.
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Extended Data Figure 4 | Bar plot showing the number of estimated species
using a Bayesian general mixed Yule-coalescent (bGMYC) model from
complete and randomly pruned data sets. The coloured columns for each

lineage correspond to the percentage (0–60%) of individuals randomly pruned
from each data set.
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