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Abstract. SINEs are short interspersed retrotrans-
posable elements that invade new genomic sites.
Their retrotransposition depends on reverse trans-
criptase and endonuclease activities encoded by
partner LINEs (long interspersed elements). Recent
genomic research has demonstrated that retroposons
account for at least 40% of the human genome.
Hitherto, more than 30 families of SINEs have been
characterized in mammalian genomes, comprising
�4600 extant species; the distribution and extent of
SINEs in reptilian genomes, however, are poorly
documented. With more than 7400 species of lizards
and snakes, Squamata constitutes the largest and
most diverse group of living reptiles. We have dis-
covered and characterized a novel SINE family, Sa-
uria SINEs, whose members are widely distributed
among genomes of lizards, snakes, and tuataras. Sa-
uria SINEs comprise a 5¢ tRNA-related region, a
tRNA-unrelated region, and a 3¢ tail region (con-
taining short tandem repeats) derived from LINEs.
We distinguished eight Sauria SINE subfamilies in
genomes of four major squamate lineages and
investigated their evolutionary relationships. Our
data illustrate the overall efficacy of Sauria SINEs as
novel retrotransposable markers for elucidation of
squamate evolutionary history. We show that all
Sauria SINEs share an identical 3¢ sequence with
Bov-B LINEs and propose that they utilize the
enzymatic machinery of Bov-B LINEs for their own
retrotransposition. This finding, along with the

ubiquity of Bov-B LINEs previously demonstrated in
squamate genomes, suggests that these LINEs have
been an active partner of Sauria SINEs since this
SINE family was generated more than 200 million
years ago.
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Introduction

SINEs (short interspersed elements) are nonviral
retrotransposable repetitive sequences with a length
of 70–500 bp that are widespread among eukaryotic
genomes (Weiner et al. 1986; Okada 1991; Schmid
and Maraia 1992; Deininger and Batzer 1993). While
some SINEs are derived from 7SL RNA (Ullu and
Tschudi 1984) or 5S rRNA (Kapitonov and Jurka
2003), most SINEs are derived from tRNA (for a list
of references see Ohshima and Okada 2005). Hence,
the tRNA-like secondary structure as well as the
conserved RNA polymerase III–specific internal
promoter sequences (designated A and B boxes) al-
lows new SINE elements to be distinguished from
other repetitive elements in the genome. SINEs can
amplify nonautonomously by a copy-and-paste
mechanism, in which the initial amplification of a
SINE at the parent locus is followed by integration of
a SINE copy at the genomic target site. This retro-
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transposition of SINEs is dependent on autonomous
partner LINEs (long interspersed elements) that en-
code reverse transcriptase (RT) and endonuclease
(EN) for their own amplification (Eickbush 1992;
Luan et al. 1993). Since most LINE/SINE pairs share
an identical 3¢ tail sequence in eukaryotic genomes
(Ohshima et al. 1996; Okada et al. 1997), RTs en-
coded by LINE partners recognize the matching 3¢
tails of SINEs and thus initiate SINE replication via
retrotransposition in trans. This mechanism of SINE
amplification was demonstrated experimentally by
our group for active LINE/SINE pairs in the eel
genome (Kajikawa and Okada 2002; Kajikawa et al.
2005). Okada et al. (1997) proposed that LINEs can
be divided into two groups, the stringent type and the
relaxed type, depending on the relative specificity of
recognition of their own RT 3¢ end. Most LINE
family RTs strictly recognize a specific sequence at
their 3¢ tail, whereas in the mammalian LINE family,
L1, no such 3¢ end-specific region (except the poly[A]
tail) is needed for RT recognition (Moran et al. 1996).
The L1-encoded RT-dependent retrotranspositional
mechanism in trans is also believed to be the driving
force of Alu-SINE amplification in primates (Jurka
1997; Esnault et al. 2000; Ohshima et al. 2003) and
CYN t-SINE amplification in flying lemurs (Piskurek
et. al. 2003; Piskurek and Okada 2005). Retrotrans-
posed CYN t-SINEs in flying lemurs are composed
exclusively of tRNA-related regions, along with a
poly(A) tail that is proposed to serve as a recognition
site for L1 RTs. Recently, Churakov et al. (2005)
characterized tRNA-related mobile elements with
poly(A) tails in the genome of armadillos and pro-
posed that DAS elements recruited the enzymatic
machinery of L1 LINEs as well.
The retroposition site of offspring copies is almost

random, although a slight sequence preference for the
target site has been reported (Jurka 1997). Also, the
copy-and-paste mechanism of retrotransposition is
intrinsically unidirectional. In addition, no mecha-
nism is known for the precise removal of SINEs from
any genome (Shedlock and Okada 2000; Batzer and
Deininger 2002). Thus, in phylogenetic studies the
insertion of a SINE at a specific genomic location
represents the derived character state for all species
that share a SINE at an orthologous genome site. In
contrast, the ancestral state is the absence of a SINE
at a particular genomic location. Because of these
characteristics, SINEs are thought to be homoplasy-
free molecular markers for evolutionary studies
(Okada et al. 1997; Shedlock and Okada 2000). In the
last decade, a growing body of literature has dem-
onstrated that SINEs are extremely effective markers
for elucidating evolutionary history (Murata et al.
1993; Takahashi et al. 1998; Nikaido et al. 1999;
Schmitz et al. 2001; Terai et al. 2004; Ray et al. 2005).
Their limitations for divergence times up to 150–200

Myr were addressed by several other investigators as
well (Hamada et al. 1998; Hillis 1999; Miyamoto
1999; Okada et al. 2004; Shedlock et al. 2004).
Mammalian orders have received special attention
with respect to the detection and characterization of
novel SINE families. To date, tRNA-derived SINE
families are one of the most abundant genomic
components in species of all four major placental
mammalian clades proposed by Murphy et al. (2001).
They are present in genomes of laurasiatherians,
which include carnivores, cetartiodactyls, chiropter-
ans, eulipothyphlans, perissodactyls, and pholydo-
tans (e.g., see Shimamura et al. 1997, 1999; Nikaido
et al. 1999; Kawai et al. 2002), in genomes of the
Euarchontoglires, namely, primates, dermopterans,
scandentians, rodents, and lagomorphs (Cheng et al.
1984; Britten et al. 1988; Schmid 1996; Nishihara
et al. 2002; Schmitz and Zischler 2003; Piskurek et al.
2003; Ray et al. 2005), as well as in genomes of the
afrotherian clade (Nikaido et al. 2003; Nishihara
et al. 2005) and in genomes of xenarthrans (Churakov
et al. 2005).
In contrast, very little progress in SINE research

has been made for reptile genomes, although the
Sauropsida represent the sister group of mammals.
Whereas there are approximately 4600 species of
mammals, more than 16,000 extant species of birds,
crocodiles, lizards, snakes, and turtles are known.
Hitherto, the only example of reptile SINEs that were
characterized and applied as molecular markers to
infer reptilian phylogeny of one turtle family (Batag-
uridae) is the tortoise polIII/SINE in hidden-necked
turtles, the discovery of which dates back about 20
years (Endoh and Okada 1986; Endoh et al. 1990;
Ohshima et al. 1996; Sasaki et al. 2004). While the
Bataguridae represent the major group of turtles
(about 60 extant species), squamate reptiles, with
more than 7400 extant species of lizards and snakes,
are the largest and most diverse group of living rep-
tiles (Zug et al. 2001). The order Sphenodontia rep-
resents the sister group of the Squamata and consists
of only two surviving species of tuatara (genus
Sphenodon) from New Zealand (Zardoya and Meyer
1998; Rieppel and Reiz 1999; Rest et al. 2003).
Sphenodontia and Squamata together form the Le-
pidosauria.
In this study we describe a novel tRNA-derived

SINE family that is widely distributed among lepi-
dosaurian genomes. We first discovered mobile ele-
ments in the genome of the common wall lizards
(Podarcis muralis, suborder Sauria) and subsequently
characterized tRNA-derived SINEs of the same
family in two additional major lineages of lizards and
in the genome of snakes. We designate this new SINE
family as Sauria SINE. We examine and discuss Sa-
uria SINE evolution, such as the genealogy of certain
SINE subfamilies in genomes of lizards and snakes, a
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possible secondary structure for the tRNA-like 5¢
end, and we discuss the short 3¢ sequence that origi-
nated from the Bov-B LINE. Furthermore, we give
an example of how to use the Sauria SINE family as a
marker for the evolution of monitor lizards.

Materials and Methods

DNA Isolation of Tissue Samples

Genomic DNA from all major Squamata groups, additional rep-

tiles, and outgroups was isolated (Table 1) by phenol-chloroform

extraction as described by Blin and Stafford (1976).

Construction and Screening of Genomic Libraries and
Sequencing of Cloned DNA

Our group previously detected many SINE families by in vitro

transcription of total genomic DNA (Endoh and Okada 1986).

However, this method has been progressively replaced by high-

throughput technologies designed for sequencing large amounts of

DNA data in a short time (Okada et al. 2004). Considering that

typical SINEs are often present in numbers that exceed 104 copies

per genome, a sufficient amount of SINE sequences can usually be

gained with 0.6 Mb genomic sequence data. Genomic libraries from

three lizards (Podarcis muralis, Anolis carolinensis, Varanus indicus)

and one snake (Azemiops feae) were constructed by complete

digestion of genomic DNA with HindIII, followed by sedimenta-

tion through a sucrose gradient and selection of DNA fragments of

up to 2 kbp. The size-fractionated genomic DNA was ligated into

HindIII-digested pUC18 plasmids at 37�C overnight. Aliquots of
the ligation reactions were transformed into Escherichia coliDH5-a
cells. Colonies were transferred to membranes for screening. The

first five SINE loci were identified by random selection and

sequencing of approximately 0.8 Mb genomic sequence data of

Podarcis muralis.

Additional Podarcis loci were screened using internal SINE

primers (POM1F, CTAGGGCTTGCTGATCAGAAG; POM1R,

GGCCAATAAAGCGAGATGAG; POM2F, TGTGGGTTAA

AGCCRCAGCG; POM2R, ACGGGCAGGGGTACCTTTAC)

labeled by primer extension in the presence of [a-32P]dCTP.
[c-32P]dATP-labeled internal primer sequences were also used to
further investigate the evolution of this novel SINE family.

Hybridization was performed at 42�C overnight in a solution of 6·
SSC containing 1% SDS, 2· Denhardt�s solution, and 100 lg/ml
herring sperm DNA and washed at 50�C for 10 min in a solution of
2· SSC containing 1% SDS. Positive plasmid clones that appeared

to contain SINE loci were isolated, and the inserts were sequenced

using universal primers M4 and RV (TaKaRa). Sequencing was

performed with an ABI PRISM 3100 Genetic Analyzer (Applied

Biosystems). Sauria SINE sequences reported in this paper have

been deposited in GenBank under accession numbers DQ023333–

DQ023415.

PCR with Internal Sauria SINE Primers and
Sequencing of Internal SINE Regions

Podarcis SINE primers POM1F, POM1R, POM2F, and POM2R

were used for PCR to amplify internal SINE regions from repre-

sentatives of all major Squamata groups (Table 1). After initial

denaturation for 3 min at 94�C, 33 cycles were performed, con-
sisting of 30 s denaturation at 94�C, 60 s annealing at 50�C, and 40
s elongation at 72�C. Amplified PCR products were cloned and

sequenced with an ABI PRISM 3100 Genetic Analyzer (Applied

Biosystems), and partial SINE regions of additional Squamata

species were aligned with SINEs already identified in the common

wall lizard. Subsequently, universal SINE primers were designed

for Sauria SINEs in lizards and snakes (SQ1F, CCCWG

CTCCTGCCAACCTAGC; SQ1R, TAGTCATGCTGGCCA

CATGACC) and used to screen SINE loci in genomes of Anolis

carolinensis, Varanus indicus, and Azemiops feae, as described

above.

Genomic DNA of all major Squamata groups, a tuatara

(Sphenodon punctatus), additional reptiles, and mammalian out-

groups (Table 1) was amplified by PCR using internal Sauria SINE

primers (SQ1F and SQ1R). PCR conditions were as follows: after

initial denaturation for 3 min at 94�C, 33 cycles were performed
consisting of 30 s denaturation at 94�C, 50 s annealing at 50�C, and
30 s elongation at 72�C.

PCR Using Primers for Sauria SINE Flanking
Regions

Genomic DNA of Varanus salvator, Varanus indicus, and Varanus

jobiensis was amplified by PCR using primers for Sauria SINE

flanking regions (VIN1for, CTAACACTGGACCCATGCTAG;

VIN1rev, AGGATTCAAGCTGATTCTGC; VIN2for, AGAGG

GCGATGGATTACTGG; VIN2rev, AGAAGGTAGCCAGACG

GTGG; VIN6for, TTGGTCTCAGCCTCATCTTC; VIN6rev,

GGATCCTGACCTGAAAGATG). PCR conditions were as fol-

lows: after initial denaturation for 3 min at 94�C, 33 cycles were
performed, consisting of 30 s denaturation at 94�C, 60 s annealing
at 51�C, and 60 s elongation at 72�C.

Sequence Analyses

Multiple sequence alignments were constructed using CLUSTAL

W (Thompson et al. 1994), and sequence analyses were performed

with BioEdit (Hall 1999). Database searches were performed with

BLASTN (Altschul et al. 1997). The Sauria SINE 5¢ end was
compared with tRNA sequences obtained from the tRNA compi-

lation of Sprinzl and Vassilenko (2005). A tRNA cloverleaf struc-

ture was constructed with the tRNAscan-SE program (Lowe and

Eddy 1997). Using TREE-PUZZLE 5.0 (Strimmer and von Haes-

eler 1996), a maximum likelihood analysis based on the HKY85

model was performed (Hasegawa et al. 1985) using the discrete

gamma distribution (eight categories) for site heterogeneity (Yang

1996). Puzzling supports were based on 25,000 replicates. Pairwise

distance calculations based on the Kimura two-parameter model

were conducted using MEGA version 3.0 (Kumar et al. 2004).

Frequently encountered CpG sites were not included in the anal-

yses of diagnostic nucleotides and the maximum likelihood analy-

sis.

Results

Identification of Novel SINEs in Lizards and Snakes

In order to identify novel SINEs in reptiles, we used
the strategy suggested by Okada et al. (2004) and
randomly sequenced 0.8 Mb of genomic sequence
data of the common wall lizard (Podarcis muralis).
This procedure identified the first five copies of
tRNA-derived SINEs having a length of approxi-
mately 350 nucleotides and belonging to the same
family. Following the initial characterization of these
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newly discovered repetitive sequences in lizards, 49
additional loci were detected by screening the entire
Podarcis genome (see Materials and Methods). These
mobile elements have the typical characteristics of
SINEs. Like most SINEs described to date, they are
composed of a 5¢ tRNA-related region (including A
and B boxes for internal RNA polymerase III pro-
moters), a tRNA-unrelated region, and a 3¢ AT-rich
region (Okada 1991; Okada et al. 1997). The sharing

of an identical 3¢ sequence of a partner LINE family
(Ohshima et al. 1996) is a typical feature for non-
mammalian tRNA-related SINEs (see below). Also,
they are dispersed in the genome of Podarcis and
flanked by characteristic direct repeats, suggesting
that they were amplified through retrotransposition
(see Supplemental Fig. 1, available at the publisher’s
web site). Following the design of universal SINE
primers for Squamata species, we screened for addi-

Table 1. List of analyzed species

Taxa Infraorder Family Subfamily Species Abbreviation Common name

Mammals Hominidae Homo sapiens HOM Human

Mammals Muridae Mus musculus MUS House mouse

Birds Struthionidae Struthio camelus SCA Ostrich

Crocodilians Crocodylidae Caiman crocodiles CCR Spectacled caiman

Turtles Bataguridae Hieremys annandalii HAN Yellow-headed temple turtle

Tuataras Sphenodontidae Sphenodon punctatus SPU Tuatara

Lizards Iguania Agamidae Agaminae Hypsilurus moestus HMO Forest dragon

Lizards Iguania Agamidae Leiolepidinae Leiolepis reevesii LRE Butterfly lizard

Lizards Iguania Chamaeleonidae Chamaeleo feae CFE Chamaeleon

Lizards Iguania Iguanidae Cortaphytinae Basiliscus plumifrons BPL Green basilisk

Lizards Iguania Iguanidae Phrynosomatinae Phrynosoma platyrhinos PPL Desert horned lizard

Lizards Iguania Iguanidae Polychrotinae Anolis carolinensis ACA Green anole

Lizards Gekkota Gekkonidae Gekkoninae Gekko vittatus GVI Lined gecko

Lizards Gekkota Gekkonidae Diplodactylinae Lialis jicari LJI Papua snake lizard

Lizards Gekkota Dibamidae Dibamus tiomanensis DTI

Lizards Scincomorpha Scincidae Acontinae Typhlosaurus caecus TCA Legless skink

Lizards Scincomorpha Scincidae Lygosominae Prasinohaema prehensicauda PPR Green tree skink

Lizards Scincomorpha Xanthusidae Xantusia vigilis XVI Desert night lizard

Lizards Scincomorpha Teiidae Teiinae Cnemidophorus lemniscatus CLE Rainbow lizard

Lizards Scincomorpha Lacertidae Podarcis muralis POM Common wall lizard

Lizards Scincomorpha Lacertidae Lacerta strigata LST Emerald lizard

Lizards Amphisbaenia Amphisbaenidae Amphisbaena xera AXE Dry worm lizard

Lizards Amphisbaenia Amphisbaenidae Blanus cinereus BCI Mediterranean worm lizard

Lizards Anguimorpha Anguidae Anguinae Ophisaurus attenuatus OAT Slender glass lizard

Lizards Anguimorpha Anguidae Annilellinae Anniella pulchra APU California legless lizard

Lizards Anguimorpha Anguidae Gerrhonotinae Gerrhonotus liocephalus GLI Texas alligator lizard

Lizards Anguimorpha Xenosauridae Xenosaurus grandis XGR Knob-scaled lizard

Lizards Anguimorpha Helodermatidae Heloderma horridum HHO Mexican beaded lizard

Lizards Anguimorpha Varanidae Varanus indicus VIN Mangrove monitor

Lizards Anguimorpha Varanidae Varanus jobiensis VJO Peach-throated monitor

Lizards Anguimorpha Varanidae Varanus salvator VSA Common water monitor

Snakes Typhlopidae Rhamphotyphlops albiceps RAL White-headed blind snake

Snakes Leptotyphlopidae Leptotyphlops dulcis LDU Texas blind snake

Snakes Aniliidae Anilius scytale ASC Coral cylinder snake

Snakes Boidae Boinae Candoia carinata CCA Pacific boa

Snakes Phytonidae Morelia viridis MVI Green tree python

Snakes Cylindrophiidae Cylindrophis ruffus CRU Red cylinder snake

Snakes Uropeltidae Uropeltis melanogaster UME Gray�s earth snake
Snakes Xenopeltidae Xenopeltis unicolor XUN Sunbeam snake

Snakes Atractaspididae Atractaspis microlepidota AMI Mole viper

Snakes Colubridae Natricinae Thamnophis sirtalis TSI Common garter snake

Snakes Elapidae Elapinae Micropechis ikaheka MIK Ikaheka snake

Snakes Elapidae Hydrophiidae Laticauda colubrina LCO Yellow-lipped sea krait

Snakes Viperidae Azemiopinae Azemiops feae AFE Fea�s viper
Snakes Viperidae Crotalinae Crotalus horridus CHO Timber rattlesnake

Snakes Viperidae Crotalinae Trimeresurus sumatranus TSU Sumatra pit viper

Snakes Viperidae Viperinae Echis coloratus ECO Palestine saw-scaled viper

Note. Complete Sauria SINE sequences and their flanking regions were isolated from species highlighted in boldface.

633



tional SINE loci in other lizards and snakes (see
Materials and Methods). The common wall lizard
(Podarcis muralis) is a member of the Scincomorpha,
the green anole (Anolis carolinensis) was chosen as
representative of the Iguania, the mangrove monitor
(Varanus indicus) is an Anguimorph, and Fea�s viper
(Azemiops feae) is a member of the Serpentes
(snakes). Very large and diverse Squamata taxa be-
long to these four reptile groups. We detected 19, 4,
and 6 additional SINE loci by screening the genomes
of Anolis, Varanus, and Azemiops, respectively. Sub-
sequently, we designated these novel SINE sequences
as Sauria SINEs. An alignment of eight subfamily
consensus sequences (see below) is shown in Fig. 1.

The Sauria SINE 5¢ End Is Derived from tRNA

We were able to construct a tRNA-like cloverleaf
structure with conserved and semiconserved nucleo-
tides, as described by Gauss et al. (1979), for all

characterized 5¢ ends of Sauria SINE subfamilies.
Thus, the 5¢ sequence of the Sauria SINE is clearly
derived from a tRNA (Figs. 1 and 2). Moreover, the
long variable arm in all lizard and snake subfamilies
resembles the characteristic long variable arm of
eukaryotic class II tRNAs. While the secondary
structure is mostly conserved in tRNA regions of
lizards, it is partially disrupted by insertions and
deletions in tRNA regions of snakes. However, when
the proposed nucleotide insertions just 3¢ of the D
loop stem (T) and in the acceptor arm (AA) are de-
leted, a homology search with the tRNAscan-SE
program (Lowe and Eddy 1997), based on the most
recent Sprinzl tRNA database (Sprinzl and Vass-
ilenko 2005), predicts a thermodynamically stable
tRNASer-like secondary structure (Fig. 2B). The
obvious conservation of tRNA-related regions with
promoter sequences A and B boxes in all Sauria SINE
subfamilies suggests the requirement for transcription
by polymerase III (Okada and Ohshima 1995).

Fig. 1. Alignment of consensus sequences of eight Sauria SINE
subfamilies isolated from the genomes of Podarcis muralis (POM),
Varanus indicus (VIN), Azemiops feae (AFE), and Anolis carolin-
ensis (ACA). The tRNA-derived consensus sequence for the Sauria
SINE 5¢ end as well as the short Bov-B LINE-derived Sauria SINE

3¢ end is shown (see also Fig. 2). Proposed double-stranded regions
are boxed. Ac, acceptor stem; D, D loop stem; An, anticodon stem;
Ps, TwC stem; Serp, Serpentes (Vipera ammodytes; accession
number AF332697); Bos, Bos taurus (accession number
AC089992).

Fig. 2. A General cloverleaf structure for tRNAs (Gauss et al.
1979; Lowe and Eddy 1997). Gray circles represent conserved and
semiconserved nucleotides, whereas dots represent variable se-
quence regions. B Predicted cloverleaf structure of tRNA-related
Sauria SINE consensus sequence (tRNAscan-SE program [Lowe
and Eddy 1997]). All conserved and semiconserved nucleotides

found in tRNAs are present. C Predicted secondary structure of the
Bov-B LINE-derived Sauria SINE region. The gray box represents
the common 3¢ sequence of published Bov-B LINEs and all Sauria
SINEs subfamilies characterized in this study. This sequence is
proposed to be important for the process of retrotransposition.
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The Sauria SINE 3¢ End Is Derived from a LINE

In each subfamily, the tRNA-related region was fol-
lowed by a central domain that is nearly as conserved
as the Sauria SINE 3¢ tail (Table 2A). Interestingly,
the 3¢ tail of the Sauria SINE is highly similar in all
eight subfamilies (except for a 9-bp deletion in
snakes) and is composed of an approximately 40-bp
conserved stem-loop region and a well-conserved re-
gion of short tandem repeats (ACCTTT), as illus-
trated in Figure 2C. We recently suggested such stem-
loop structures for the 3¢ end of LINE/SINE pairs of
the eel genome (Kajikawa and Okada 2002; Kajikawa
et al. 2005). Our previous studies demonstrated that
the conserved stem-loop structures as well as the
conserved short tandem terminal repeat regions are
required for retrotransposition. In this study we
showed that a short sequence of the 3¢ Sauria SINE
tail is identical with the 3¢ sequence of Bov-B LINEs
(Figs. 1 and 2C). We postulate that the common 3¢
sequence of Bov-B LINEs and Sauria SINEs as well
as the tandem repeat region are important for retro-
transposition (see Discussion).

Evolution of Sauria SINE Subfamilies

Analysis of the Sauria SINE family led us to divide
repetitive sequences of lizards and snakes into dif-
ferent subfamilies. The genome of Podarcis includes
three Sauria SINE subfamilies. Seven loci belong to
the POMa-type, 5 loci form the POMb-type, and the
remaining 42 Sauria SINE sequences were charac-
terized as part of the POMc-type subfamily (see Sup-
plemental Fig. 1, available at the publisher�s web
site). Likewise, three distinct subfamilies are present
in the genome of Anolis. An assemblage of 13 loci
illustrates the structure of the ACAa-type, 2 loci be-

long to subfamily ACAb-type, and 4 loci cluster to-
gether and form the ACAc-type (see Supplemental
Fig. 2, available at the publisher�s web site). The four
Sauria SINE loci in the genome of Varanus and the
six loci detected in Azemiops represent, in each case,
one subfamily of Sauria SINEs (Fig. 1).
An analysis of the distribution of diagnostic nu-

cleotides, together with the distribution of Sauria
SINE subfamilies among major squamate lineages,
allows us to infer the genealogy of novel Sauria SINE
subfamilies in genomes of scincomorph lizards, igu-
anian lizards, anguimorph lizards, and snakes. The
POMb-type and POMc-type are more closely related to
each other than either subfamily is to the POMa-type.
Numerous diagnostic nucleotides (Supplemental
Fig. 1; sites 28, 32, 34, 37, 60, 94, 150, 153–155, 175,
182, 183, 216, 234, 242, 271, 293, 297, 298, 323, 331,
338, 343, 350, 353, 354, 359) and a maximum likeli-
hood analysis (see below) using Sauria subfamilies of
other squamate groups to root the tree support this
sister group relationship with convincing puzzle
support values (Figs. 3 and 4A). This result suggests
that the POMb-type and POMc-type source genes
originated from POMa-type sequences. The POMc-type

can be distinguished most obviously from the other
two subfamilies by a 10-bp deletion in the tRNA-
unrelated region (Fig. 3; Supplemental Fig. 1, sites
275–284). The presence of these 10 nucleotides and a
number of other diagnostic sites distinguishes the
POMb-type from the POMc-type subfamily (Fig. 3;
Supplemental Fig. 1, sites 27, 45, 47, 226, 268, 269,
304, 339, 352, 357, 369). Furthermore, many nucle-
otides indicate that POMa-type members 7 and 74 are
part of a subsubfamily that is more closely related to
POMb-type members than the rest of the POMa-type

group (Fig. 4A; Supplemental Fig. 1, sites 32, 94,
125, 153-155, 175, 338, 343). It is also possible to

Table 2A. Percentage sequence divergence among four regions of eight Sauria SINE subfamily consensus sequences

tRNA-related region tRNA-unrelated region 1 tRNA-unrelated region 2 Bov-B and tandem repeat region

Sites 1–101 102–216 217–331 334–394

Divergence 34% 17% 24% 14%

Table 2B. Percentage sequence divergence among eight Sauria SINE subfamily consensus sequences

POMa-type POM b-type POMc-type VIN AFE ACAa-type ACAb-type ACAc-type

POMa-type — [2.5] [2.3] [3.6] [4.1] [3.6] [3.9] [3.8]

POM b-type 17.7 — [1.2] [2.8] [3.6] [3.1] [3.1] [3.0]

POMc-type 15.3 4.3 — [3.0] [3.7] [3.1] [3.0] [3.0]

VIN 29.1 19.9 21.9 — [2.8] [3.1] [3.3] [3.2]

AFE 33.9 28.0 29.0 19.2 — [3.7] [3.7] [3.5]

ACAa-type 27.9 21.8 21.2 21.5 28.1 — [1.5] [1.7]

ACAb-type 30.6 21.4 20.8 23.5 27.7 6.0 — [1.7]

ACAc-type 30.3 21.1 21.0 23.2 25.7 8.0 8.3 —

Note. Numbers in brackets (above diagonal) represent the standard error.
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further divide the POMb-type subfamily into two
subsubfamilies (Fig. 4A; Supplemental Fig. 1, sites
27, 41, 42). POMb-type members 11 and 87 share a
small deletion of two nucleotides in the tRNA-related
region that is also present in all 42 POMc-type mem-
bers (Fig. 3). Therefore, it can be assumed that the
POMc-type source gene originated from a common
ancestor of Sauria SINE members with a structure
most likely similar to POMa-type members 7 and 74
and POMb-type members 11 and 87. Based on the
random and frequent detection of POMc-type se-
quences, it is obvious that the POMc-type represents
the most abundant subfamily in the genome of Po-
darcis. Only a few members of the POMc-type group
cluster together to form subsubfamilies. They can be
distinguished from all other members of this group by
a 9-bp (Supplemental Fig. 1, sites 233–241), a 5-bp
(Supplemental Fig. 1, sites 212–216), and an 8-bp
(Supplemental Fig. 1, sites 5–12) deletion in loci
POM 8 and POM 121, POM 80 and POM 111, and
loci POM 95 and POM 127, respectively (Fig. 4A).
The low level of variation among POMc-type members
seems to indicate that the POMc-type source gene is
young. Pairwise distance calculations of SINEs in the
genome of the common wall lizard support this
finding (data not shown). Moreover, the highest rate
of amplification of POMc-type SINE copies shows that
this source gene is predominantly active in its retro-
transposition of offspring copies in the genome of
lacertid lizards.
We also divided Sauria SINEs into three distinct

subfamilies in the genome of Anolis. Twelve diag-

nostic nucleotides support the sister group cluster of
ACAb-type and ACAc-type members to ACAa-type se-
quences (Fig. 3; Supplemental Fig. 2, sites 25, 32, 64,
75–79, 91, 101, 107, 128, 324). This implies that the
ACAb-type and ACAc-type source genes were derived
from ACAa-type sequences, as revealed subsequently
by a maximum likelihood analysis (Fig. 4A). The
ACAb-type subfamily can easily be distinguished from
ACAc-type members by a 3-bp duplication in the
tRNA-unrelated region (Fig. 3; Supplemental Fig. 2,
sites 231–233). Three additional diagnostic nucleo-
tides discriminate members of the ACAb-type from
ACAc-type sequences (Fig. 3; Supplemental Fig. 2,
sites 93, 108, 338). The ACAa-type source gene ap-
pears to generate most Sauria SINE sequences in the
genome of Anolis and thus was likely the most suc-
cessful in its retrotransposition of offspring copies. It
is possible to distinguish two sub-subfamilies in the
ACAa-type subfamily based on four diagnostic nu-
cleotides (Fig. 4A; Supplemental Fig. 2, sites 11, 20,
100, 121). We identified several examples in the gen-
ome of Anolis in which Sauria SINEs inserted at the
3¢ end into the tandem repeat region of preexisting
SINE loci. Previous studies based on mammalian
genomes have mentioned that various retroposons
show a common tendency to insert near or within
sequence regions where other mobile elements have
previously inserted (Slagel et al. 1987; Krane et al.
1991; Piskurek et al. 2003).
The number of Sauria SINE members in angu-

imorph lizards and snakes is too limited to distin-
guish different subfamilies in their genomes.

Fig. 3. Genealogy of Sauria SINE subfamilies in the genomes of
three lizards and one snake. Diagnostic nucleotides are shown ei-
ther as white bars (deletions of two or more nucleotides), as black
bars (insertions of two or more nucleotides), or as numbers below
the four major Sauria SINE regions of schematic subfamily
structures. Numbers on the left side of the schematic subfamily

structures indicate the quantity of Sauria SINE loci sequenced
from a certain subfamily. Numbers in parentheses on the right side
of each schematic subfamily structure indicate the number of sub-
subfamilies identified in a given genome (see also Evolution of
Sauria SINE Subfamilies, in text, and Fig. 4A).
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However, consensus sequences of both species rep-
resent distinct subfamilies of the Sauria SINE family.
Moreover, subfamilies in monitor lizards (VIN) and

snakes (AFE) are more closely related to each other
than to Sauria SINE subfamily members of scin-
comorph and iguanian lizards (Fig. 4A). The most

Fig. 4. A Evolutionary relationships among Sauria SINE sub-
families of four major squamate lineages analyzed using the max-
imum likelihood method. Numbers corresponding to internal
nodes represent puzzle support values. The puzzle support value
for the sister group cluster of ACAb-type and ACAc-type increases to
68 if subfamilies AFE and VIN are used as outgroups. Branch
length represents nucleotide substitutions per site. Large arrows

illustrate Sauria SINE subfamilies, whereas small arrows represent
sub-subfamilies (see Evolution of Sauria SINE Subfamilies, in text,
for explanations). B Evolutionary relationships of major squamate
lineages (Townsend et al. 2004). The tree topology of major snake
lineages is boxed (Vidal and Hedges 2004). We analyzed Sauria
SINEs of the indicated Squamata species obtained in this study and
from database searches (Table 3).
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obvious way to distinguish both VIN and AFE sub-
families from all other subfamilies is the consensus
region at nucleotide positions 220–247 (Fig. 1). A 15-
bp deletion discriminates both subfamilies from Sa-
uria SINEs in scincomorph lizards (Fig. 1, sites 220–
235), whereas Sauria SINEs in iguanian lizards have
an even larger 27-bp deletion at this location (Fig. 1,
sites 220–247). Three other diagnostic nucleotides
verify a close relation between Sauria SINE sub-
families VIN and AFE (Fig. 1, sites 50, 187, 269).
Besides, 16 unambiguous diagnostic nucleotides
support ACA subfamilies as a sister group to a clade
including the subfamily cluster VIN/AFE (Fig. 1,
sites 19, 40, 43, 93, 152, 153, 155, 202, 210, 269, 309,
312, 317, 331, 375, 376), whereas eight diagnostic
nucleotides are specific for ACA subfamilies in igu-
anian lizards (Fig. 1, sites 5, 6, 10, 113, 163, 218, 302,
303). In other words, it can be proposed that the 15-
bp deletion (Fig. 1, sites 220–235) happened in a
common ancestor of source genes, AFE, VIN, and
ACA, while a second 12-bp deletion occurred sepa-
rately in the ancestral source gene of ACAa-type,
ACAb-type, and ACAc-type in the genome of iguanian
lizards (Fig. 3).
Furthermore, relationships of Sauria SINE sub-

families were examined using all subfamily consensus
sequences in a maximum likelihood analysis
(Fig. 4A). Sauria SINE subfamilies of lacertid lizards
were used to root the tree (Townsend et al. 2004;
Vidal and Hedges 2004). The tree topology of Sauria
SINE subfamilies from all four major squamate in-
fraorders we investigated is clearly identical to the
tree topology of major Squamata groups based on
large nuclear data sets (Townsend et al. 2004). Al-
though SINE subfamilies do not necessarily represent
actual evolutionary relationships of species, it seems
quite evident, considering the detailed examination of
Sauria SINE subfamilies in different squamate ge-
nomes, that in this case there is a strong correlation
(Fig. 4B). Townsend et al. (2004) proposed a close
relation of snakes and anguimorph lizards, which
together represent the sister group of iguanian liz-
ards. Sauria SINE subfamilies are related to each
other in such a phylogenetic pattern (Fig. 4A; see
Discussion).

Distribution, Sequence Divergence, and Copy Number
of Sauria SINEs

To examine the distribution of Sauria SINEs among
reptilian genomes, we isolated genomic DNA from 48
species and analyzed it by PCR using this DNA as
template and two oligonucleotide primers that were
specific to the tRNA-unrelated region (see Materials
and Methods). Sauria SINEs are widely distributed
among genomes of all major groups of lizards and
snakes as well as in the genome of the tuatara

(Fig. 5). This result was supported through database
searches with BLASTN (Altschul et al. 1997), since
we detected several partial and complete Sauria
SINEs in additional squamate species (Fig. 4B, Ta-
ble 3). This result suggests that Sauria SINEs might
have been generated in a common ancestor of lepi-
dosaurian genomes approximately 230 million years
ago (Benton 1993).
Sauria SINE subfamily consensus sequences in

squamate lineages, some of which diverged more
than 100 million years ago, are surprisingly identical
(4–34%; see Table 2B). While the mean sequence
divergence of Sauria SINE members within lizard
genomes is relatively low (POM, 13.9%; VIN, 9.6%;
ACA, 17.7%), it is a little higher in the snake
genome (AFE, 27.6%). We strengthened this result
with pairwise distance calculations of all subfamily
members against subfamily consensus sequences
(Fig. 6).
We estimated the copy number of Sauria SINEs

on the basis of the random isolation frequency of
retrotransposable elements obtained from the Po-
darcis muralis genome. The mean genome size of
Squamata species is postulated to be 2.1 · 109 bp
(http://www.genomesize.com). Therefore, the pre-
dicted copy number of Sauria SINEs is 130,000 per
haploid genome. However, the copy number varied
greatly depending on the genome analyzed (data not
shown), probably because of differences among ret-
rotranspositional activity of Sauria SINEs in the ge-
nomes of various lizards and snakes.

Using Sauria SINEs as Markers for Evolution

In order to test if Sauria SINEs provide an evolu-
tionary marker system in reptile genomes, we per-
formed PCR experiments with primers specific for
sequences flanking SINEs for a group of anguimorph
lizards. Monitor lizards, genus Varanus, represent a
monophyletic group within Anguimorpha, which is
believed to be closely related to snakes (Lee 2000).
Within Varanus, three major lineages, African, Indo-
Asian, and Indo-Australian, are delineated based on
their biogeographical distribution (Fuller et al. 1998;
Ast 2001). The Indo-Asian lineage comprises two
distinct clades with a proposed divergence time of
more than 112 Myr (Schulte et al. 2003; Hugall and
Lee 2004). Terrestrial Asian forms and the water
monitors of the Varanus salvator complex belong to
Indo-Asian clade A, whereas the mangrove monitors
of the Varanus indicus complex belong to Indo-Asian
clade B (Ast 2001). We investigated Sauria SINE loci
in three species of the Indo-Asian lineage, namely, in
the common water monitor (Varanus salvator) as
representative of clade A as well as in the mangrove
monitor (Varanus indicus) and the peach-throated
monitor (Varanus jobiensis) as representatives of
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clade B. The presence of the SINE sequences, VIN1,
VIN2, and VIN6, in the latter two species and the
absence of these three Sauria SINEs at orthologous
genome sites in Varanus salvator clearly indicate that
Varanus indicus and Varanus jobiensis belong to a
monophyletic group (Figs. 7A and B). This example
verifies that Sauria SINEs in squamate genomes can
be used to track evolutionary events in reptile lin-
eages.

Discussion

Structural Aspects of Sauria SINEs and Their
Connection to Bov-B LINEs

tRNAs can be divided into two distinct classes. In
comparison to class I tRNAs, which contain a vari-
able region with only four or five nucleotides,
eukaryotic class II tRNAs, including tRNALeu and
tRNASer, contain more than twice as many nucleo-
tides, thus forming an additional stem-loop, which is
known as the long extra arm. Apart from the Sauria
SINE, tRNASer has been proposed to be the most
likely candidate for the origin of equine SINEs
(Sakagami et al. 1994).
We found that Sauria SINEs and Bov-B LINEs

have a short common 3¢ sequence. Luan et al. (1993)
proposed the ‘‘target-primed reverse transcription’’
(TPRT) as the mechanism of LINE retrotransposi-

tion. In the TPRT, the RT synthesizes cDNA in situ
using a 3¢ OH of the DNA generated by a nick
introduced through the EN as a primer. Later, Oh-
shima et al. (1996) discovered that 3¢ ends of the
tortoise PolIII/SINE and the CR1 LINE, also present
in the tortoise genome, are almost identical. This
finding prompted us to generalize the observation of
Luan et al. (1993) and conclude that 3¢ ends of SINE
families are actually derived from 3¢ ends of corre-
sponding LINE families. Thus, we proposed that
SINEs are amplified through the TPRT using RTs
encoded by LINEs in trans (Ohshima et al. 1996;
Okada et al. 1997; Kajikawa and Okada 2002; Ka-
jikawa et al. 2005; Ohshima and Okada 2005).
Therefore, the function of the illustrated Sauria SINE
stem-loop structure probably correlates with the
recognition of the RT encoded by the Bov-B LINE.
This was experimentally demonstrated for the eel
LINE UnaL2 (Baba et al. 2004). While the stem-loop
structure suggested for LINE/SINE pairs of the eel
genome is straightforward (Kajikawa and Okada
2002; Kajikawa et al. 2005), it is of a more sophisti-
cated nature in LINE/SINE pairs in the genome of
sharks (Ogiwara et al. 1999).
Recently there has been a controversial discussion

about the Bov-B family, and many questions con-
cerning its genomic origin and evolution remain
unanswered. Originally, the Bov-B family was
thought to be a SINE family (Lenstra et al. 1993)

Fig. 5. PCR analysis with primers
directed toward internal Sauria SINE
sequences. Genomic DNA from reptilian
and outgroup sources was amplified by
PCR using primers SQ1F and SQ1R, as
described under Materials and Methods.
M, marker (/X174-HincII digest). See
Table 1 for the abbreviations of lizards,
snakes, and other amniotes.

Table 3. Sauria SINE loci detected by GenBank database searches

Taxa Infraorder Family Subfamily Species Accession no.

Lizards Iguania Iguanidae Polychrotinae Anolis carolinensis AF134190*

Lizards Iguania Iguanidae Polychrotinae Anolis carolinensis AF134194*

Lizards Iguania Iguanidae Polychrotinae Anolis carolinensis L31503*

Lizards Scincomorpha Lacertidae Podarcis muralis AY147830

Lizards Scincomorpha Scincidae Gnypetoscincus Gnypetoscincus queenslandiae AY508919

Lizards Scincomorpha Scincidae Gnypetoscincus Gnypetoscincus queenslandiae AY508920

Snakes Colubridae Natricinae Thamnophis sirtalis AF098739

Snakes Colubridae Colubrinae Elaphe quadrivirgata AB060638

Snakes Elapidae Hydrophiidae Laticauda semifasciata AB111958*

Snakes Elapidae Bungarinae Bungarus flaviceps AB112356

Snakes Viperidae Viperinae Vipera berus berus VBE496616

Note. Asterisks indicate sequences that contain complete Sauria SINE loci and their corresponding 80–100% identical flanking direct

repeats.

639



until Szemraj et al. (1995) identified a full-length (3.1-
kbp) element of Bov-B (BDDF for bovine dimer-
driven family). Subsequently, the Bov-B family was
designated the Bov-B LINE family (Okada and Ha-
mada 1997). The Kordis group discovered Bov-B
elements in squamate genomes (Kordis and Gu-
bensek 1995) and examined their distribution (Kordis
and Gubensek 1998; Zupunski et al. 2001; see below).
The stem-loop structure and the conserved terminal
repeat region in Sauria SINEs confirm the stringent
type character of Bov-B LINEs. It was previously
suggested that Bov-B-LINE RTs strictly recognize
the specific 3¢ tail of their partner SINE family Bov-
tA in the genome of ruminants (Okada and Hamada
1997; Okada et al. 1997). Gilbert and Labuda (1999)
strengthened this finding when they reported MIR-
like SINEs (Mar-1) in marsupial genomes that share
approximately 95 bp of their 3¢ end with Bov-B
LINEs. The shared common 3¢ end of Sauria SINEs
and Bov-B LINEs is approximately 20 nucleotides in
length (Fig. 2C). It is not possible to align the fol-
lowing 20 bp right before the terminal tandem repeat
sequence of Sauria SINEs and Bov-B LINEs, which
might be a sign of distinct, yet unknown, Bov-B
LINE subfamilies in squamate genomes (Fig. 1).
After all, Sauria SINEs in genomes of lizards and

snakes represent another interesting example in
which an active LINE has donated its 3¢ end for
retrotransposition of its partner SINE during geno-
mic evolution.

Relationship of Sauria SINEs and Partner Bov-B
LINEs to Other Widely Distributed SINE Families

We identified Sauria SINE subfamilies in all major
lineages of lizards and snakes. The Sauria SINE copy
number in the genome of the common wall lizard
indicates that these novel retrotransposable elements
account for up to 1% of the total genomic informa-
tion. However, whereas the genome size of Podarcis
represents the mean genome size of Squamata spe-
cies, some skinks have just half the genome size,
whereas the giant girdled lizard has a genome size
that is about twice that of lacertid lizards (http://
www.genomesize.com).
Interestingly, Sauria SINEs in different squamate

lineages are nearly identical, although substitution
rates in squamate genomes are higher than in other
sauropsids (Hughes and Mouchiroud 2001). For
example, nuclear-encoded Squamata genes evolve
approximately 30–40% faster than those of the
chicken genome. Hughes and Mouchiroud (2001)
also found a slightly higher substitution rate for
snakes compared with lizards, which we mentioned
earlier as well. Nonetheless, the relatively low se-
quence divergence, about 19%, between subfamily
consensus sequences of snakes and anguimorph liz-
ards (Table 2B) in comparison with obviously higher
sequence divergences between subfamily consensus
sequences of different lizard genomes suggests that
substitution rates are very similar in Squamata lin-
eages. Thus, we might expect that, in the period since
the generation of the Sauria SINE family approxi-
mately 230 million years ago, these SINEs have been
highly active in squamate genomes and have been
retrotransposed through RT and EN encoded by
partner Bov-B LINEs. The Bov-B LINE distribution
described by the Kordis group (Kordis and Gubensek
1995, 1998; Zupunski et al. 2001) proves that the
proposed partner LINE family of Sauria SINEs is
equally present in lizards and snakes, which is a
requirement for the successful retrotransposition of
Sauria SINEs, as explained earlier. Kordis and Gu-
bensek (1995) suggested a horizontal transfer of Bov-
B LINEs from the ancestral snake lineage to the
ancestor of ruminants. However, subsequently Bov-B
LINEs were detected (Gilbert and Labuda 1999) and
sequenced (Zupunski et al. 2001) in marsupials,
calling into question the hypothesis of horizontal
transfer. Thus, Bov-B LINEs may have originally
been present in a common ancestor of all mammals
or even in an ancestor of all amniotes. Although the
research about the distribution of Bov-B LINEs is

Fig. 6. Pairwise distances of Sauria SINE members within four
different Squamata genomes. The sequence divergence in the gen-
ome of lizards (POM, ACA, VIN) is slightly lower than the se-
quence divergence in the snake genome (AFE).
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still ongoing, it seems clear that they represent a
perfect partner LINE family for widely distributed
Sauria SINEs in lepidosaurian reptiles. Another an-
cient and widely distributed SINE family was desig-
nated MIR, for mammalian-wide interspersed repeats
(Jurka et al. 1995; Smit and Riggs 1995). MIRs
proliferated not only before the mammalian radiation
but possibly even before the amniote radiation.
About 10,000 faint matches to MIRs were reported in
the chicken genome (International Chicken Genome
Sequencing Consortium 2004), and they are also
present in crocodile genomes (A. Shedlock, pers.
comm.). An approximately 70-bp central segment of
MIRs was named the core region since it appears to
be highly conserved in all sequences. It was shown
that the core region survived in different lineages such
as mammals, reptiles, birds, fish, and even inverte-
brates like mollusks (Gilbert and Labuda 1999).
Therefore, Gilbert and Labuda (1999) proposed to
call this widely spread class of SINE families CORE-
SINEs. CORE-SINEs and Sauria SINEs are not re-
lated, although the CORE-SINE family Mar-1 also
shares an identical 3¢ tail with Bov-B LINEs (Gilbert
and Labuda 1999). Another superfamily of SINEs,
V-SINEs, is widespread in vertebrate genomes (Og-
iwara et al. 2002). V-SINEs also contain a central
region that is fairly well conserved. Although there is
no relation between V-SINEs and Sauria SINEs, a
central domain that is more conserved than other
SINE regions (except the 3¢ tail region) precedes the
5¢ end tRNA-related sequence of Sauria SINEs as
well (Table 2A). Finally, another superfamily of

SINEs in vertebrates, recently characterized by our
group, is not identical to Sauria SINE sequences in
genomes of lizards and snakes (unpublished data of
Nishihara and Okada).

Sauria SINE Subfamilies and Their Evolutionary
Implications

Despite the fact that iguanian lizards are traditionally
not nested within Scleroglossa (which represent all
lizard species besides those belonging to Iguania),
previous morphological studies have proposed a sister
group relationship between Anguimorpha and Ser-
pentes (Estes et al. 1988). Our tree topology, which is
based on diagnostic nucleotides of eight Sauria SINE
subfamilies, is identical to this species topology. Lee
(2000) placed snakes as nested within Anguimorpha
and close to monitor lizards. In contrast, Vidal and
Hedges (2004) predicted a terrestrial origin for snakes
when discussing a close relation between iguanian
lizards and snakes. Kumazawa (2004), using complete
mitochondrial genomes, placed snakes at the base of
the squamate tree as a sister group to all lizard taxa.
Also, Townsend et al. (2004) obtained different results
for the squamate tree when combining their nuclear
RAG-1 and c-mos data with their mitochondrial ND2
data set. Schmitz et al. (2005) proposed that the longer
the divergence time and the higher the evolutionary
rate differences between genes, the less convincing the
phylogenetic tree on the basis of a mixed set of both
mitochondrial and nuclear sequences. Furthermore,
they discussed problematic aspects of mitochondrial

Fig. 7. A Alignment of three Sauria SINE loci and their flanking
sequences in monitor lizards. The absence of these three SINE loci
in the genome of Varanus salvator (VSA) and the presence of SINE
sequences at orthologous genome locations in Varanus indicus
(VIN) and Varanus jobiensis (VJO) support a monophyletic origin
of the latter two species. A and B boxes of the tRNA-related se-
quence regions are shown and the clearly recognizable flanking

direct repeats are boxed. B PCR analysis with flanking Sauria
SINE primers. Genomic DNA from monitor lizards was amplified
by PCR using primers VIN1for+VIN1rev, VIN2for+VIN2rev,
and VIN6for+VIN6rev, as described under Materials and Meth-
ods. PCR products that illustrate the presence and absence of SINE
loci are boxed. M, size marker.
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data sets versus nuclear sequences for phylogenetic
analyses.
Phylogenetic analyses based on SINEs as genetic

markers have been performed extensively in recent
years in mammalian genomes (see Introduction).
However, in reptiles, only one example from turtle
genomes is known using SINEs as markers to map
evolutionary history (Sasaki et al. 2004). Since we
might expect to find Sauria SINE loci at orthologous
genome sites in anguimorph lizards and snakes (see
above), we performed flanking PCRs for SINE loci in
monitor lizards and demonstrated that Sauria SINEs
can be used as evolutionary markers for future
studies to infer the phylogenetic relationships of
squamate reptiles.

A New Approach to Solve the Origin of Snakes

Sauria SINEs as genetic markers for evolution might
eventually bring a resolution to the problem of the
phylogenetic placement of snakes. However, the high
mutational rate of SINE loci in nonfunctional regions
of the genome can make the detection of insertion
patterns difficult after �150–200 Myr of divergence,
which is approximately the time frame of the split be-
tween snakes and their closest relatives. On the other
hand, Sauria SINE subfamilies in the genomes of
monitor lizards and snakes are closely related
(Fig. 4A), and the flanking sequences in monitor liz-
ards are fairly well conserved (Fig. 7A), which might
be associatedwith their conservedoverallmorphology.
These aspects of Sauria SINEsmake these SINEs ideal
for the identification of shared SINE loci in lizards and
snakes, which may resolve the vagaries of squamate
genome evolution and finally givemolecular proof that
‘‘snakes are lizards too’’ (Pianka and Vitt 2003).
We examined the generation and evolution of

eight Sauria SINE subfamilies in genomes of four
major squamate lineages and demonstrated that they
are noticeably conserved over more than 200 Myr of
evolution. Besides the fact that we have now estab-
lished Sauria SINEs as effective evolutionary markers
for reptile evolution, the slower mutation rate of
certain sequences in Sauria SINEs (Table 2A), as we
previously mentioned for other widely distributed
SINE families, might be associated with an as yet
unidentified function.
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