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6Instituto de Zoologı́a y Ecologı́a Tropical, Universidad Central de Venezuela, Av. Los Ilustres, Los Chaguaramos, Apartado

Postal 47058, Caracas 1041-A, Venezuela
7Colección Ornitológica Phelps, Apartado 2009, Caracas 1010-A, Venezuela

8E-mail: brumfld@lsu.edu

Received September 28, 2010

Accepted April 30, 2011

Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested

different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae,

using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We

found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological

evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results

of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage

accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in

tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies

examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode

of evolutionary radiations on continents.
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A central aim of evolutionary biology is to understand the his-

torical processes driving species diversification. Both the fossil

record and recent molecular phylogenetic studies that address

the tempo of diversification typically yield a pattern of early,

rapid cladogenesis followed by a decline in diversification rate

(Stanley 1973; Harmon et al. 2003; Kadereit et al. 2004; Ruber

and Zardoya 2005; Kozak et al. 2006; McKeena and Farrell 2006;

McPeek 2008; Phillimore and Price 2008; Gavrilets and Losos

2009), although not every radiation shows density-dependent di-

versification (Alfaro et al. 2009a; Esselstyn et al. 2009; Slater

et al. 2010). A common interpretation of a decline in diversifi-

cation is that ecological opportunity facilitated an initial burst of

speciation into new adaptive zones but then diversification rate

declined as niches filled over time (Gavrilets and Vose 2005;

Rabosky and Lovette 2008a). This inference of process from

pattern is based on the ecological theory of adaptive radiations,

which hypothesizes that ecological opportunity at first fuels but

then limits radiations, predicting a pattern of diversity-dependent

diversification and a slowdown over time in adaptive trait evo-

lution (Simpson 1944; Schluter 2000). The process of increased

competition for limited niches and phenotypic and genomic con-

straints on trait evolution could explain a pattern of slowdown in

the rate of diversification (e.g., Simpson 1953; Foote 1997). On

the other hand, a recent study suggests that simple geographic

speciation, without the intervention of niche processes, can also

generate a pattern of declining speciation through time (Pigot

et al. 2010). Clearly, additional studies of both lineage accumu-

lation and trait evolution across taxonomic groups are needed

to understand the range of processes underlying evolutionary

radiations.

Our understanding of the processes driving diversification

is incomplete. Most studies to date have used incomplete phy-

logenies. Missing species can yield a false pattern of decline in

diversification rate over time (Nee et al. 1994; Nee 2001), poten-

tially leading to an over-association of radiations with diversity-

dependent diversification (Cusimano and Renner 2010). In addi-

tion, the majority of studies have focused on radiations that are

highly spatially limited (e.g., on islands or in lakes) (Baldwin

and Sanderson 1998; Lovette et al. 2002; Gillespie 2004; Losos

and Thorpe 2004; Seehausen 2006). With their relatively simple

geography and small areal extent, island and lake radiations may

experience similar histories of initial high niche availability and

low competition, followed by a filling of niches over time. In con-

trast, the ecological histories of continental radiations are likely

much more complex and varied and may yield a different tempo

and mode of diversification (Irschick et al. 1997; Barraclough

et al. 1999). Because most biodiversity resides on continents (May

1994), understanding the processes underlying diversification in

ecologically and historically complex continental biotas is criti-

cal. Of the continental radiations examined in detail (e.g., McPeek

and Brown 2000; Kozak et al. 2006; Rabosky and Lovette 2008a),

many occupy only a small portion of the continent on which

they occur, and few exhibit the high morphological diversity and

species richness that characterize island and lake radiations. Test-

ing evolutionary models of diversification in densely sampled,

ecomorphologically diverse, species-rich continental radiations is

essential to understand fully the historical processes that produce

high species richness and phenotypic diversity.

We tested models of lineage accumulation and phenotypic

evolution in one of the most well-recognized and largest (293+
species) of avian continental radiations (Fitzpatrick 1982; James

1982; Remsen 2003): the Neotropical ovenbirds and woodcreep-

ers (Furnariidae, sensu Sibley and Monroe 1990; Remsen et al.

2011). When compared to the seven other families in the in-

fraorder Furnariides (Moyle et al. 2009), the Furnariidae is charac-

terized by a high rate of cladogenesis and a high diversity in mor-

phological traits associated with feeding behavior and locomotion

(Claramunt 2010a). The Furnariidae also represent a truly conti-

nental radiation: 97% of currently recognized species and 100% of

genera occur within South America (Remsen 2003). In contrast to

most Neotropical groups, furnariids are a predominant component

of the avifauna in nearly all terrestrial habitats in South America

(Ridgely and Tudor 1994; Marantz et al. 2003; Remsen 2003).

Furnariids are found from the snow line at over 5000 m in the An-

des down to the richest bird communities in the world in lowland

Amazonia, and from perpetually wet cloud forests to nearly rain-

less deserts. The prevalence of furnariids throughout the Neotrop-

ical landscape as well as their exceptional diversity make them a

particularly appropriate group for investigating diversification at

a continental scale (Haffer 1969; Fjeldså et al. 2005).

Many geological and ecological processes could affect the

pattern of lineage accumulation in a radiation that spans both an

entire continent and a time period including major climatic shifts

(e.g., to a more arid climate ∼ 15 Ma; Pleistocene climatic cy-

cles) and geological events (e.g., the uplift of the Northern Andes

between 2 and 5 Ma). Here, we employ likelihood methods for

detecting temporal shifts in diversification rates to provide in-

sight into the underlying causes of diversification in this family.

We assess the consistency of the best-fitting model with scenar-

ios of a slowdown in lineage accumulation through time due to

ecological constraints (Gavrilets and Vose 2005) or to stable geo-

graphic range dynamics (diversity-dependent models) (Pigot et al.

2010), with hypotheses of shifts in diversification rate associated

with major geological and climatic events or evolution of key

traits (a discrete change in rates), and with a hypothesis of con-

stant rate of diversification (pure-birth and birth–death models).

We also test models that allow both speciation and extinction

rates to vary, because moderate levels of extinction may obliter-

ate the signal of early rapid diversification (Rabosky and Lovette

2008b). We next test competing hypotheses for the tempo of
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phenotypic evolution in the Furnariidae, including a slowdown in

the rate of phenotypic evolution, a constraint on trait evolution to-

ward selective peaks (an Ornstein–Uhlenbeck [OU] process) and a

Brownian motion (BM) process. To distinguish these hypotheses,

we use three approaches, including likelihood models of contin-

uous trait evolution (Pagel 1999), a node-height test (Freckleton

and Harvey 2006), and disparity through time plots (Harmon et al.

2003).

Methods and Materials
MOLECULAR DATA

We sampled 285 of the 293 recognized species (97%) and all 69

recognized genera in the Furnariidae (Table S1). For most species

(89%), we sequenced two or more vouchered specimens to vali-

date species identification or for calibration purposes, but we did

not include the second individual in subsequent analyses. As out-

groups, we included representatives of all closely related families

in the infraorder Furnariides (Moyle et al. 2009): Formicariidae,

Rhinocryptidae, Grallariidae, Conopophagidae, Melanopareiidae,

and Thamnophilidae, as well as representatives of Tyrannidae and

Tityridae.

We used standard methods to extract genomic DNA from pec-

toral muscle and to amplify and sequence six genes (see Material

and Methods in Supporting information). For the majority of in-

dividuals, we amplified and sequenced three mitochondrial genes

and one nuclear intron: NADH dehydrogenase subunit 3 (ND3;

351 bp), cytochrome oxidase subunit 2 (CO2; 684 bp), NADH

dehydrogenase subunit 2 (ND2; 1041 bp), and β-fibrinogen in-

tron 7 (Bf7; ∼840 bp). For at least one individual per genus, we

also included a large portion of the single exons of the recombi-

nation activating genes RAG-1 (2904bp) and RAG-2 (1152bp).

Most RAG sequences were obtained from Moyle et al. (2009).

For three individuals for whom we were unable to amplify one of

these genes (Philydor pyrrhodes, Lochmias nematura, and Sitta-

somus griseicapillus), we used a sequence obtained for another

individual of the same species.

We edited sequences using Sequencher 4.6 (Gene Codes Cor-

poration, Ann Arbor, MI) and aligned sequences manually using

Mesquite version 2.6 (Maddison and Maddison 2009). The fi-

nal alignment included 6954 base pairs and was deposited in

TreeBASE (Study ID S11550). Protein-coding sequences were

translated into amino acids to confirm the absence of stop codons

and anomalous residues. Preliminary phylogenetic analysis sug-

gested that Bf7 sequences for the tribe Synallaxini were probably

not orthologous; therefore, we excluded these sequences from

further analyses. These sequences may represent a pseudogene

and were not deposited in GenBank. All remaining sequences

were deposited in GenBank under accession numbers JF974355-

JF975363.

PARTITIONS AND SUBSTITUTION MODELS

We estimated the optimal partitioning regime using the strategy

described in Li et al. (2008) to designate partitions based on their

similarity in evolutionary parameters (see Methods and Materials

in Supporting information). We determined that a fully partitioned

dataset (16 partitions) was the optimal partition strategy for the

concatenated dataset (Table S2).

We used model selection techniques to determine the best

substitution model for each partition under the optimal parti-

tion regime. With the tree obtained in the primary maximum-

likelihood analysis, we used PAUP (Swofford 2003) to obtain

likelihood values for all substitution models featured in Mod-

eltest 3.7 (Posada and Crandall 1998) and calculated values of

the Bayesian information criterion (BIC) (Posada and Crandall

1998; Sullivan and Joyce 2005). We identified the GTR + � +
I model as the best model for the majority of the partitions, and

the HKY + � + I model as the best model for the first and sec-

ond codon positions of RAG 1 and all three codon positions of

RAG 2.

PHYLOGENETIC INFERENCE

We conducted a joint estimation of topology and divergence times

in a Bayesian framework in the program BEAST version 1.5.2

(Drummund and Rambaut 2007) under an uncorrelated lognormal

model (UCLD) (Drummund et al. 2006). We unlinked substitution

model, rate heterogeneity, and base frequencies across partitions.

We used a Yule prior for tree shape and the default priors for

the substitution model and relaxed clock parameters. A UPGMA

tree was used as the starting tree. No restrictions were placed

on the topology so that topological uncertainty was factored into

the divergence date estimates. Because furnariid fossils are rare,

relatively recent, and of uncertain relationships (Claramunt and

Rinderknecht 2005), we used biogeographic events to place priors

on the age of the root and on the divergence times of the most

recent common ancestor (tMRCA) of 12 sets of taxa (see Methods

and Materials in Supporting information).

To optimize the Markov chain Monte Carlo (MCMC) oper-

ators, we performed incrementally longer runs and adjusted the

scale factors for the operators as suggested by the BEAST output.

Once scale factors stabilized, we ran analyses for a total of 150

million generations across seven independent runs. Using Tracer

1.5 (Drummund and Rambaut 2007), we determined that replicate

analyses converged, and all parameters met benchmark effective

sample size values (>200). We identified and discarded the burn-

in. Converged runs were combined in LogCombiner (Drummund

and Rambaut 2007) and used to estimate the posterior distribu-

tions of topologies and divergence times as well as the maximum

clade credibility (MCC) tree.
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DIVERSIFICATION ANALYSES

We performed all analyses in R (R-Development-Core-Team

2008) using the Ape (Paradis et al. 2004), Geiger (Harmon et al.

2008), and Laser (Rabosky 2006) libraries. We used the MCC

tree after excluding both the outgroup and ingroup samples used

solely for calibration purposes (final included n = 285).

We used maximum-likelihood methods to compare models

of lineage diversification and chose the best model using AIC.

Using functions in the Laser library, we fit the following mod-

els of diversification: pure-birth (PB), birth–death (BD), Yule

model with two rates (Y2R), linear (DDL) and exponential (DDX)

diversity-dependent diversification, and three models that varied

either speciation (SPVAR), extinction (EXVAR) or both (BOTH-

VAR) through time (Rabosky 2006; Rabosky and Lovette 2008b).

We compared the fit of the best rate-variable model and best rate-

constant model by computing the test statistic:

�AIC = AICconstant − AICVariable,

where AICconstant is the AIC score of the best rate-constant model

and AICvariable is the AIC score of the best rate-variable model. A

positive �AIC implies that the rate-variable model fits the data

better than the rate-constant model. To avoid conditioning our

results, we determined the distribution of �AIC over the posterior

distribution of trees sampled using MCMC. To test for any over

fitting of the data, we simulated 5000 phylogenies under a rate-

constant model and compared the fit of the best rate-constant

and rate-variable models to this null distribution. We simulated

these phylogenies with 293 tips dropping eight of those tips to

reflect sampling in the furnariid phylogeny (285 species with

eight missing taxa).

To test for lineage-specific shifts in diversification rates, we

used the MEDUSA algorithm (Modeling Evolutionary Diversi-

fication Using Stepwise AIC), which fits a series of BD models

with an increasing number of breakpoints (rate shifts), and esti-

mated the maximum-likelihood values for each set of birth and

death parameters (Alfaro et al. 2009b). The method then uses a

forward selection and backward elimination procedure to deter-

mine the simplest model with the highest likelihood to describe

the given set of branch lengths, age, and species richness data. The

threshold for retaining additional rate shifts was an improvement

in AIC score of 4 units or greater (Burnham and Anderson 2003).

Another way of investigating models of diversification is

to analyze the relationship between clade age and clade size.

Older clades have had more time to accumulate diversity than

younger clades (Labandeira and Sepkoski 1993; McPeek and

Brown 2007). However, this positive relationship between age

and diversity may breakdown due to clade volatility (differen-

tial extinction of clades with high and low diversification rates)

(Gilinsky 1994; Sepkoski 1998), among-lineage variance in diver-

sification rates, or ecological constraints on clade growth (Rick-

lefs 2006). A strong correlation between clade age and clade size,

on the other hand, suggests a constant model of diversification. To

assess the relationship between clade age and size in furnariids,

we compared the age and species richness of 63 monophyletic

groups as determined by the MCC tree. These groups corre-

sponded in most cases to currently recognized genera, except

that we included six previously monotypic genera within other

genera based on the results of our phylogenetic hypothesis. For

the crown age of each clade, we used the mean estimated age from

the posterior distribution of trees. For clade size, we counted the

number of recognized species (including those not included in the

molecular phylogeny, n = 8; Remsen et al. 2011). Using a gener-

alized least squares model correcting for phylogeny (Freckleton

et al. 2002), we tested the prediction that clade age and clade size

are positively correlated. We ran this analysis both including and

excluding monotypic genera.

Extinction can affect the pattern of lineage accumulation.

Simulation studies suggest that extinction can remove the signa-

ture of an early-burst radiation (i.e., an initial high rate of diver-

sification followed by a slowdown over time), particularly under

scenarios of a decline in speciation rate with a background of

high relative extinction (Rabosky and Lovette 2008b, 2009). We

evaluated and compared maximum-likelihood estimates of rel-

ative extinction and 95% profile-likelihood confidence intervals

from the BD, SPVAR, EXVAR, and BOTHVAR models and the

MEDUSA analysis. Because estimating extinction from molecu-

lar phylogenies can be problematic, we also examined theoretical

expectations for scenarios of declining net diversification with a

background of high relative extinction. To examine this idea un-

der realistic parameters, we generated expected LTT curves under

three scenarios of declining diversification rate (20-fold, 10-fold,

and fivefold decline) each with an identical high relative extinc-

tion rate (ε = 0.82 [i.e., the relative extinction rate of suboscines

(Ricklefs et al. 2007)]). Curves are theoretical expectations from

Nee et al. (1994). We found parameters that would result in (1)

three different declines in net diversification rate under an identi-

cal ε and (2) a total of 285 surviving lineages after one time unit

(t = 1). The net diversification rate was modeled as r(t) = λ0e−zt

(1 − ε) following Rabosky and Lovette (2009). The code used

to run this analysis in R can be found in Supporting information

(ExtinctionLTT.R).

MORPHOLOGICAL EVOLUTION ANALYSES

To describe ecomorphological variation, we measured 11 vari-

ables that represent the size and shape of major functional modules

of avian external anatomy: bill, wing, tail, and feet. We included

measurements for all species in the phylogeny except Asthenes

luizae. We measured an average of 4.2 specimens per species

(range: 1–19). Only three species were represented by a single
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specimen, and most were represented by more than three. Bill

length was measured from the anterior border of the nostril to tip

of the bill, and bill width and depth (vertically) at the level of

the anterior border of the nostrils. We took three wing measure-

ments, all from the carpal joint and without flattening the natural

curvature of the closed wing: (1) wing length to the longest pri-

mary, as a general measure of wing extent; (2) wing length to

the tenth primary, the most distal one in furnarioids, which is

related to the shape of the wing tip; and (3) length to the first

secondary feather, which represents the width of an open wing.

Tail maximum and minimum length were taken from the base of

the central rectrices to the longest and shortest rectrices, respec-

tively. The third tail measurement, an index of tail width, was

measured as the width of the central rectrix at its midlength. We

measured tarsus length and hallux length (including the claw) as

measures of leg length and foot size, respectively. All measure-

ments were taken with a Mitutoyo Digimatic Point Caliper by

the same person (S. Claramunt) and loaded directly into an elec-

tronic spreadsheet using an input interface. Morphometric data

were deposited as an associated document file in Microsoft Ex-

cel format in MorphoBank (http://www.morphobank.org) as part

of the Morphological Evolution of the Furnariidae project. All

morphological variables were log-transformed so that the differ-

ences between observations in the logarithmic space are propor-

tional to differences in the original space (Ricklefs and Travis

1980).

We used AICc to compare the fit of three models of con-

tinuous trait evolution (Pagel 1999): a random walk model (BM

Model), a model of constrained trait evolution toward an optimum

(OU Model), and a model of deceleration (δ < 1) or acceleration

(δ > 1) of trait evolution through time (Delta Model). To account

for intraspecific variation in trait values, we incorporated standard

error when fitting each model.

We then ran a node height test, which tests for accelerations

or decelerations in trait evolution, by comparing the independent

contrasts (IC) for a trait with the respective node height (estimate

of relative age) (Freckleton and Harvey 2006). For each trait,

we calculated IC incorporating measurement error (Felsenstein

2008). We then summed IC values across traits for a compos-

ite IC. We obtained node heights from the MCC tree. Using a

linear model, we tested the prediction from the ecological the-

ory of adaptive radiations of a negative correlation between the

absolute values of the independent contrasts and node height. A

negative correlation would imply that species are dividing niche

space more finely through time, consistent with a niche-filling

model. To meet model assumptions, we used the Box–Cox method

(R-Development-Core-Team 2008) to determine the most appro-

priate transformation of the IC values for a linear model. The best

transformation was a power transformation, with values raised to

the power of 0.2.

We measured the time course of morphological diversifi-

cation using disparity-through-time (DTT) plots (Harmon et al.

2003). Disparity is the dispersion of points in multivariate space

and is usually measured as the mean squared Euclidean distance

among species. However, we used the total variance instead (Van

Valen 1974). The total variance is closely related to the mean

squared Euclidean distance (Pie and Weitz 2005) but allowed us

to take measurement error into account. We partitioned the to-

tal variance into two components, intraspecific and interspecific,

using a random effect one way ANOVA, and used only the inter-

specific variance for the analysis. We also calculated the expected

total variance under a BM model of trait evolution at each time

point based on 10,000 phylogenetic simulations. We estimated

the Brownian rate for the simulations using function fitContinu-

ous incorporating measurement error. We plotted the mean sub-

clade disparity for the observed and simulated data against node

age. We also calculated the morphological disparity index (MDI),

which is the area between observed and simulated clade disparity

curves in standardized axes (Harmon et al. 2003). To determine

the probability of obtaining a negative MDI value when the true

model is BM, we computed the MDI value between our data and

each of 10,000 simulated datasets. Negative values of MDI indi-

cate that disparity through time is less than predicted under BM

and that most variation is partitioned as among basal clades. Such

a pattern indicates that clades tend to occupy different regions of

morphological space, which is a common feature of adaptively

radiating lineages (Harmon et al. 2003). The code used to run this

analysis in R can be found in Supporting information (Variance

Through Time functions.R).

Results
PHYLOGENETIC INFERENCE

A joint estimation of topology and divergence times in a Bayesian

framework in the program BEAST version 1.5.2 (Drummund and

Rambaut 2007) yielded a phylogenetic estimate for the Furnari-

idae with good resolution and high nodal support (>80% of nodes

with posterior probability >0.95; Figs. 1 and S1).

LINEAGE DIVERSIFICATION

Lineage accumulation in the Furnariidae occurred at a constant

rate during most of the 30 million year history of the radiation

with a shift to a lower rate 1.7 million years ago (Fig. 2). A

Yule model with two rates (Y2R) provided the best fit (rate 1 =
0.16 lineages/Ma, rate 2 = 0.05, shift point = 1.17 Ma) based on

model selection using AIC. The best-fit rate-constant model was a

PB model. When we compared the fit of these models (�AIC) to

the posterior distribution of furnariid phylogenies sampled using

MCMC, we found a positive distribution, implying that the Y2R
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Figure 1. Bayesian estimate of phylogenetic relationships and divergence times among species of ovenbirds and woodcreepers (family

Furnariidae) as inferred from a partitioned analysis of three mitochondrial and three nuclear genes. Bars at nodes indicate the 95%

highest posterior density for the inferred divergence time estimates. The color of the circles at nodes indicates posterior probability

support, > 95% (black), 95–75% (gray), <75% (white).
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Figure 2. Near-constant lineage accumulation over time in the

Furnariidae radiation. The black line represents the number of lin-

eages through time for the maximum clade credibility tree, and

the gray shaded area is the 95% quantile on the number of lin-

eages at any given time drawn from the posterior distribution of

phylogenetic trees. The dashed line indicates the expected num-

ber of lineages under a constant-rate model of diversification with

no extinction.

model fits the data better than a PB model. We then compared the

fit of the Y2R and PB models to the null distribution from phylo-

genies simulated under a PB model. We found a distribution cen-

tered on zero with a long positive tail but with minimal overlap of

the �AIC distribution tabulated from the posterior (Fig. S2). This

result suggests that the Y2R model often provided a better fit than

a PB model to simulated PB phylogenies. Despite this tendency

to overfit the data, the Y2R model fits the observed data better

than a PB model. After truncating the tree at the time of the rate

shift, a rate-constant model received the strongest support (lower

AIC indicates better model fit: PB AIC = –951; Y2R AIC =
–949). All other models tested, including diversity-dependent di-

versification, received lower support (Table 1).

When we allowed rates of speciation and extinction to vary

among lineages using the MEDUSA algorithm, we found strong

support for two rate shifts from the background diversification

rate (r = λ – μ = 0.1; ε = μ/λ = 2.2 ×10−05): one shift near

the base of the Furnariinae approximately 23 Ma (r = 0.16;

ε = 2.5×10−08), and a second shift near the base of the genus

Cranioleuca approximately 3.5 Ma (r = 0.58; ε = 2.5×10−08).

We found a significant and positive relationship between

genus age and species richness in the Furnariidae (phylogenetic

GLS (Freckleton et al. 2002): including monotypic genera—n =

Table 1. Summary of diversification models fitted to the branch-

ing times derived from the Furnariidae phylogeny before (above

the line) and after (below the line) truncating the tree at 1.17 Ma.

Model Log likelihood �AIC1

Yule-2-rate 505.01 0
Diversity-dependent, linear 494.49 19.86
Diversity-dependent, exponential 492.58 22.86
Pure-birth 491.14 23.75
Speciation decline 492.37 25.28
Birth-death 491.14 25.74
Both variable 492.41 27.21
Extinction-increase 491.06 27.91

Pure-birth 476.47 0
Birth-death 476.59 1.76
Yule-2-rate 477.54 1.85
Diversity-dependent, linear 476.49 1.97
Diversity-dependent, exponential 476.47 2
Speciation exponential decline 476.61 3.73
Extinction exponential increase 476.58 3.77
Variable speciation and extinction 476.61 5.73

1Difference in AIC scores between each model and the overall best-fit model.

63, R2 = 0.57, F = 80.5, P < 9.5×10−13; excluding monotypic

genera—n = 36, R2 = 0.15, F = 5.8, P < 0.02; Fig. S3). This

correlation indicates that factors such as niche saturation or limits

to clade size have not erased the signal of increased diversity over

time (Rabosky 2009).

Maximum-likelihood estimates of extinction under a BD

model indicate that extinction rates were orders of magnitude

lower than speciation rates (relative extinction ε = μ/λ = 0 [95%

CI: 0, 0.105]). All other likelihood models that accounted for

varying speciation and extinction rates (SPVAR, EXVAR, BOTH-

VAR) and for nonuniform processes (MEDUSA) provided esti-

mates of extinction rates within this confidence interval. Low

levels of extinction are unlikely to mask the signature of early

burst radiations. Due to the difficulty of estimating extinction from

molecular phylogenies, we also examined theoretical expectations

for LTT curves in the context of declining rates of diversification

and high relative extinction. When the decline in diversification

is high (20- or 10-fold), the signal of early, rapid diversification

is still apparent, even under high relative extinction (Fig. S4).

When the decline in diversification is low (fivefold) under high

relative extinction, then the result is a curve very similar to that

seen under constant speciation with increasing extinction (i.e., an

upturn in the number of lineages toward the present [Rabosky and

Lovette 2008b]). None of these theoretical curves resemble the

furnariid LTT curve, making it unlikely that the true pattern of

diversification is one of declining speciation under high relative

extinction.
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Table 2. Summary of �AIC (difference between each model and

the overall best-fit model) for three models of trait evolution for

each morphological trait.

Morphological character BMM1 DM2 OUM3

Wing length to the longest
primary

0 1.9 1.9

Wing length to the tenth
primary (wing tip shape)

0 1.6 1.4

Wing width 0 1.0 0.6
Tail maximum length 0 1.8 1.6
Tail minimum length 0.4 0 0
Tail width 1.4 0.4 0
Bill length 0 0.7 2.0
Bill width 0 1.2 2.0
Bill depth 0 2.0 2.0
Tarsus length 0 0.4 0.5
Hallux length 0.8 0 0.8

1Brownian Motion Model.
2Delta Model.
3Ornstein–Uhlenbeck Model.

MORPHOLOGICAL EVOLUTION

We found that a BM model provided the best fit for eight of the

11 traits. A model with a constraint on trait evolution toward an

optimum (OU) described trait evolution best for two traits (tail

minimum length and tail width), and the Delta model provided

the best fit for one trait (hallux length). The difference in AICc

values between these alternative models and the BM model were

very low (�AICc < 2 units), suggesting that the OU and Delta

models do not provide a substantially better fit than a BM model

(Table 2).

We next used the node height test to detect accelerations

or decelerations in trait evolution over time. Using this test, we

found a significant negative relationship between the composite

index of independent contrast scores and node height (t = –5.44,

P < 1× 10−07; Fig. 3). This negative relationship held across

individual traits. These results suggest that furnariids are dividing

morphological space more finely through time, consistent with a

niche-filling model.

The time course of morphological diversification indicated

that relative disparity through time for morphological traits was

less than that predicted under a BM model (Fig. 4). Supporting

this qualitative assessment, our analysis yielded a negative MDI

value (MDI = –0.156). There were no MDI values greater than

zero, indicating that a BM process cannot explain morphological

evolution in the furnariids. Values of disparity less than predicted

under BM suggest that most variation is partitioned as among

basal clade differences, indicating that basal clades tend to occupy

different regions of morphological space.
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Figure 3. A negative relationship between node height and inde-

pendent contrasts for morphological traits. Absolute value of the

composite independent contrasts describing morphological space

compared to the height (relative age) of the corresponding node.

The negative relationship between node height and independent

contrasts is significant (n = 280, t = –5.44, P < 1 × 10−7). The

solid line is the best-fit line. Independent contrasts were power-

transformed to stabilize variance. Lower contrast values indicate

that paired comparisons are relatively similar in morphology. Node

height is the distance from the root to a given node, such that the

height of the root is zero.

Discussion
LINEAGE DIVERSIFICATION

The tempo of lineage accumulation in the Furnariidae was nearly

constant through time (Fig. 2) apart from a few rate shifts near

the base and near the tips of the furnariid phylogeny. Model se-

lection and the MEDUSA analysis identified three discrete rate

shifts. One of these shifts was a rate decrease that occurred re-

cently (∼1 Ma) relative to the age of the radiation (∼33 Ma) and

could be detected across the entire phylogeny. We determined that

this rate shift is not a spurious result of the Yule two-rate model

overfitting the data. Therefore, this shift may represent an artifact

of missing phylotaxa or a real decrease in net diversification due

to a geological or climatic event. In this family, many biological

species comprise more than one divergent evolutionary lineage

(cf. Tobias et al. 2008; e.g., Sanı́n et al. 2009). Many missing

young lineages could yield a false signature of a recent shift to

a lower rate of diversification. If true, then including these cryp-

tic lineages may erase the recent rate shift. Another explanation

for this pattern is that a real decrease in net diversification rate
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Figure 4. Relative disparity through time (DTT) for morphologi-

cal traits was less than that predicted under a Brownian motion

model. Disparity values closer to 1 indicate that most variation is

found within subclades and values closer to 0 indicate that vari-

ation is partitioned among subclades relative to the entire clade.

Solid line indicates actual disparity; dashed line indicates median

expected disparity and gray lines indicate expected disparity for a

sample of 100 simulations based on a Brownian motion model.

occurred approximately 1 Ma due to dramatic fluctuations in cli-

mate during the Pleistocene. At this time, distinguishing these

two scenarios is not possible. However, it is important to note

that neither diversity-dependent diversification nor an exponen-

tial increase in extinction can explain this recent decrease in the

rate of diversification, because both models received low support

(Table 1). Together, our results suggest that lineage accumula-

tion occurred at a constant rate for most of the history of the

Furnariidae.

When we allowed clades to vary in speciation and extinc-

tion rates using MEDUSA, we found evidence for at least two

lineage-specific rate shifts. Both shifts were significant increases

in diversification rate. The first occurred approximately 23 Ma

(range: 17 – 27 Ma) near the base of the radiation containing most

of the subfamily Furnariinae. Fjeldså et al. (2005) suggested that

changes in cranial kinesis at the base of the Furnariinae may be

in part responsible for high rates of diversification in this group.

Ancestral character reconstructions or trait-dependent diversifi-

cation analyses (Maddison et al. 2007) are needed to test this

hypothesis. Of the three subfamilies, Furnariinae has the high-

est species richness, and at least one hypothesis (Irestedt et al.

2009) suggests that the radiation of this lineage was propelled by

a major climatic shift to a more arid climate in South America

beginning approximately 15 Ma (Zachos et al. 2001). Species

in this subfamily tend to occupy more open environments and

aridification creates more open environments, thus potentially fa-

cilitating speciation in this group. Our results do not support this

hypothesis, because the shift in diversification rate appears to have

occurred prior to the shift in climate. However, ruling out an asso-

ciation between diversification and climate shifts is difficult, be-

cause estimates of the timing of both often have large confidence

intervals.

A second increase in diversification occurred approximately

3.5 Ma along the stem of a clade containing most, but not all, of

the species in the genus Cranioleuca. Previous work has noted

extremely low levels of interspecific genetic divergence in this

species-rich group, suggesting rapid and recent diversification

(Garcı́a-Moreno et al. 1999), but the driving force behind this is

not immediately apparent. Rapid diversification in this group does

not appear to be the result of a key morphological or behavioral

innovation (Claramunt 2010b). Species in this genus are typical

furnariines that do not differ significantly in foraging behavior,

nesting behavior, or morphology. However, plumage evolution

can occur rapidly in this genus (Remsen 1984) and different traits

seem to change independently from each other (Maijer and Fjeldsa

1997; Claramunt 2002). These two factors can produce multiple

combinations of plumage characters in short evolutionary time. If

some of these plumage traits confer reproductive isolation, then

this could explain rapid speciation in this clade.

CLADE AGE VERSUS CLADE SIZE

For lineages diversifying at a nearly constant rate, older clades

are expected to have had more time to accumulate diversity than

younger clades (Labandeira and Sepkoski 1993; McPeek and

Brown 2007). This process should generate a positive relation-

ship between clade age and size. If species diversity were limiting

diversification in the furnariids, then we would expect clade size

to achieve a state of equilibrium, weakening the relationship be-

tween clade age and size. Instead, we found a significant, positive

relationship between clade age and species richness, consistent

with our finding of a nearly constant rate of lineage accumulation

in the furnariids.

Several empirical studies on higher taxa have found a neg-

ative or no relationship between clade age and clade diversity

(Magallon and Sanderson 2001 [Angiosperm clades]; Ricklefs

2006 [Avian tribes]; McPeek and Brown 2007 [Mammalian or-

ders and Teleost fish orders]; Rabosky 2010b [Ant genera]). The

correlation between age and diversity may breakdown due to

clade volatility (Gilinsky 1994; Sepkoski 1998), among-lineage

rate variation, or ecological constraints. Rabosky (2009, 2010b)

tested whether these factors could explain the breakdown in the

relationship between clade age and size in higher taxa. His re-

sults suggested that only ecological constraints, rather than clade
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volatility or variance in clade diversification rates, are a strong

enough effect to disrupt the expected positive relationship be-

tween clade age and diversity. If ecological constraints are the

primary factor reducing the correlation between clade age and

size, then furnariids appear to be less constrained by ecological

factors than other higher taxa examined to date.

ROLE OF EXTINCTION

Extinction is of concern when evaluating lineage diversification

because high levels of extinction can erase the signature of rapid

initial lineage diversification (Rabosky and Lovette 2008b). We

estimated a low level of relative extinction for furnariids (ε =
0.10), but estimates of extinction rates from molecular phylo-

genies can be incorrect (Rabosky 2010a). Estimating extinction

from molecular phylogenies is problematic because BD mod-

els assume complete, resolved phylogenies and no constraints

on clade growth. Simulation studies suggest that for phyloge-

netic trees with complete taxonomic sampling (in the case of the

furnariids, 97% of species sampled), estimates of relative extinc-

tion are unbiased in the absence of among-lineage rate variation

(Rabosky 2010a). As among-lineage rate variation increases in

simulations, estimates of relative extinction become upwardly bi-

ased (Rabosky 2010a). Thus, our estimate of low relative extinc-

tion for the furnariids is more likely to be upwardly biased than

too low an estimate. However, confidence intervals in these sim-

ulation studies are high, and it is possible that relative extinction

in the furnariids is higher than we estimated.

Simulation studies suggest that moderate-to-high levels of

extinction can remove the evidence of rapid early diversification

followed by a slowdown (Rabosky and Lovette 2008b, 2009). A

slowdown in diversification can occur via several different scenar-

ios, including a decline in speciation, an increase in extinction,

or both. In simulations of declining speciation with no extinc-

tion, lineage accumulation curves show the expected slowdown

in diversification (Rabosky and Lovette 2008b). In simulations

of increasing extinction under constant speciation, the number of

lineages increases toward the present. This “pull of the present”

can create an apparent excess of recent lineages. Thus, a slow-

down in diversification due to increasing extinction through time

yields a pattern of increasing diversification toward the present

rather than a pattern of constant diversification. We do not find an

upturn in the number of lineages in the furnariid LTT plot; instead,

we find an LTT curve nearly indistinguishable from that expected

under constant diversification (Fig. 2). This suggests that neither

declining speciation under zero extinction nor increasing extinc-

tion under constant speciation can explain the pattern of furnariid

diversification. This result is supported by model fitting in that

neither the SPVAR nor the EXVAR (variable speciation or ex-

tinction through time) models received strong support. However,

a more complex model of varying and nonuniform speciation

and extinction rates could potentially generate a pattern nearly

indistinguishable from a constant rate model.

There may be certain scenarios in which a decline in speci-

ation coupled with a high level of relative extinction could yield

a pattern of lineage accumulation difficult to differentiate from

constant diversification. In simulations of a decline in speciation,

the signature of the decline is reduced as the relative level of con-

stant extinction is increased (Rabosky and Lovette 2009). Under

relative extinction levels of 0 to 0.75, the signature of a decline

in diversification is still apparent but less pronounced. And un-

der extremely high relative extinction (0.99), there is an upturn

in the number of lineages toward the present. However, relative

extinction levels between 0.75 and 0.99 might result in a pattern

similar to constant diversification. If furnariids have a high level

of relative extinction, then it is possible that the true scenario of

furnariid diversification is one of declining speciation with a high

level of background extinction. However, none of the theoretical

LTT curves generated under scenarios of declining diversifica-

tion and high relative extinction rate (ε = 0.82 [e.g., estimated

relative extinction rate in the suboscines (Ricklefs et al. 2007)])

resembled the furnariid LTT curve, making it unlikely that the

true pattern of diversification is one of declining speciation under

high relative extinction.

MORPHOLOGICAL EVOLUTION

Theory suggests that as organisms diversify into new adaptive

zones, morphological evolution should be rapid at first and then

slow as ecological opportunities become limited (Simpson 1944).

If morphological evolution in furnariids is a function of ecological

opportunity, then we predicted that we would find support for (1)

furnariids diversifying into new adaptive zones, (2) early and rapid

morphological evolution followed by a significant slowdown, and

(3) niche saturation. Consistent with the first prediction, the dis-

parity through time plot indicated that furnariids partitioned mor-

phological disparity among rather than within clades. This finding

suggests that furnariid lineages evolved along distinct morpholog-

ical trajectories through time, probably exploring different adap-

tive zones. Providing support for the third prediction, we found

evidence that furnariids have divided morphological space more

finely through time, as the absolute contrast in morphological trait

values decreased from the root to the tips in the node height test.

This pattern is usually indicative of niche saturation. However,

model selection did not provide support for the second predic-

tion of decelerating trait evolution (Delta < 1). Instead, evolution

of most of the traits examined appears consistent with a BM

process. Altogether, our results suggest that furnariids diversified

early along different morphological trajectories and the difference

among these trajectories (or adaptive zones) has become smaller

over time, but morphological evolution has not slowed. Instead,

traits appear to be evolving according to a random walk process.
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The pattern of morphological evolution in furnariids is more

consistent with an early burst of diversification, as found in Den-

droica warblers (Rabosky and Lovette 2008a), than with a lin-

eage experiencing nearly constant diversification through time.

Partitioning of disparity among rather than within clades is more

often associated with lineages undergoing early, rapid cladoge-

nesis, whereas equal partitioning of disparity within and among

clades is more often associated with lineages exhibiting constant

diversification (Harmon et al. 2003). This pattern of association

between disparity and diversity is often considered evidence that

lineages exploring new adaptive zones undergo bursts of lineage

diversification (Burbrink and Pyron 2010). We find evidence of

furnariids exploring new adaptive zones, but not of an excess of

early speciation events. Niche saturation is also more consistent

with a radiation undergoing diversity-dependent diversification.

For example, as the diversity of competing lineages present on an

island increases, Anolis lizards divide morphological space more

finely (Mahler et al. 2010). A study of the evolution of feed-

ing adaptations in Old World leaf warblers (Phylloscopus spp.)

also found evidence of niche saturation limiting phenotypic evo-

lution (Freckleton and Harvey 2006). If speciation is linked to

ecological opportunities, then niche saturation should be associ-

ated with a decline in speciation rate. However, in the furnariids,

we find evidence of niche saturation but not of a decline in diver-

sification. Only the likelihood models provided evidence of uni-

form morphological evolution with no evidence of limits on clade

growth, consistent with a radiation undergoing constant lineage

accumulation.

Inconsistency between disparity and diversity analyses could

indicate either that morphological analyses are picking up a sig-

nature of early, rapid lineage accumulation that was not detected

by the diversification analyses or that the pattern of disparity

and diversity are not tightly linked in the furnariid radiation. As

mentioned earlier, there are factors, such as moderate-to-high

levels of extinction, that can erase the signature of early, rapid

diversification (Rabosky and Lovette 2009). This signature might

have disappeared from the phylogeny but remains apparent in the

morphological data. A recent analysis of disparity and diversity

in modern whales (Neoceti) also could not distinguish lineage

diversification from a Yule model but found evidence of niche

saturation and a negative MDI (Slater et al. 2010). This study

concluded that the signature of an adaptive radiation might be

retained in morphological traits even after it has been erased from

the structure of a phylogeny. However, if this was the case in the

Furnariidae, then we would have expected limitations on clade

growth leading to a low correlation between clade age and size;

instead, we found a significant correlation between clade age and

size. This result does not provide evidence against ecological lim-

its on lineage accumulation but does suggest that it is a less likely

interpretation of the data. The furnariid radiation might instead

exhibit real differences in patterns of disparity and diversity, in-

dicating either that the furnariid radiation is on a trajectory to

slow down but has not done so yet or that speciation is not linked

tightly to ecological opportunities in this group.

Because the Furnariidae are an exceptional radiation, char-

acterized by both a high rate of cladogenesis and high diversity

in morphological traits (Claramunt 2010a), we predicted that this

group would show signatures of an adaptive radiation (Gavrilets

and Losos 2009), including a slowdown in lineage accumulation

and in phenotypic evolution over time. Although we find some

evidence of the latter, we did not find evidence of the former,

which leads us to consider how the spatial and temporal distri-

bution of ecological opportunities across radiations may affect

patterns of lineage accumulation. Most island and lake radiations

probably experienced one period of open niches that facilitated

rapid speciation (Seehausen 2006; Gavrilets and Losos 2009). If

these radiations were able to continue to colonize new areas, such

as nearby islands, then a constant rate of diversification could

be maintained via a series of new ecological opportunities. For

example, the Southeast Asian shrew (Crocidura) radiation on the

Southeast Asian archipelagos has a near-constant rate of lineage

diversification that may be associated with its continued colo-

nization of new islands (Esselstyn et al. 2009). However, in most

island or lake radiations, once niches filled, diversification rate

could only decline. For example, successive radiations of cichlids

show early bursts and then declines in diversification (Seehausen

2006) as successive radiations of Anolis lizards show declines in

phenotypic diversification (Mahler et al. 2010). In contrast, the

Furnariidae span an entire continent and a time period including

major climatic shifts and geological events; thus, they have ex-

perienced a series of ecological opportunities over time due to

dynamic habitat and range changes.

Concurrent with the furnariid radiation in South America,

dramatic geoclimatic changes, from the uplift of the Andes to

the development of the Amazon riverine system, created abun-

dant opportunities for both geographic and ecological speciation.

Geological studies suggest that the central and northern Andes

rose in a series of pulses over the past 25 million years (Gregory-

Wodzicki 2000), creating new vegetation zones and changing the

organization of the Amazon and Paraná river basins several times

(Hoorn et al. 1995; Figueiredo et al. 2009). These biogeographic

events created multiple barriers to dispersal as well as a series

of new habitats into which furnariids could radiate. This con-

tinuous creation of new barriers and niches may have facilitated

near-constant diversification in the furnariid radiation in spite of

constraints on phenotypic evolution. As diversification patterns

and ecological histories of continental radiations are examined

with the attention given to island radiations, continental radia-

tions will likely prove to be complex and varied in their tempo

and mode of lineage and phenotypic diversification.

EVOLUTION OCTOBER 2011 2 9 8 3



ELIZABETH P. DERRYBERRY ET AL.

ACKNOWLEDGMENTS
We thank M. E. Alfaro, R. E. Ricklefs, C. D. Cadena, and two anonymous
reviewers for helpful comments on earlier drafts of the manuscript. We
thank numerous collectors, including C. M. Milensky, and institutions
for providing tissue samples (see Table S1) and C. Burney, G. Bravo, C.
D. Cadena, A. Cuervo, J. Maley, and L. Naka for sequence data for this
project. G. Bravo, J. M. Brown, J. W. Brown, L. Harmon, C. Heibl, W.
Pfeiffer, J. McCormack, D. Rabosky, A. Rambaut, and M. Tingley pro-
vided code, analysis assistance, and discussion concerning analyses. This
research was supported in part by NSF grants DBI-0400797 and DEB-
0543562 to RTB, NSF AToL grant EAR-0228693 to JC, Frank M. Chap-
man (AMNH) and NSF-RTG (Univ. of Arizona) postdoctoral fellowships
and a faculty/research small grant (Univ. of Arizona) to RTC, CNPq
(Brazil) grants 310593/2009–3, 574008/2008–0, and 476212/2007–3 to
AA, and a Sigma Xi Grant-in-Aid of Research to SC. Any use of trade,
product, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

LITERATURE CITED
Alfaro, M. E., C. D. Brock, B. L. Banbury, and P. C. Wainwright. 2009a.

Does evolutionary innovation in pharyngeal jaws lead to rapid lineage
diversification in labrid fishes? BMC Evol. Biol. 9:255.

Alfaro, M. E., F. Santini, C. Brock, H. Alamillo, A. Dornburg, D. L. Rabosky,
G. Carnevale, and L. J. Harmon. 2009b. Nine exceptional radiations plus
high turnover explains species diversity in jawed vertebrates. Proc. Natl.
Acad. Sci. USA 106:13410–13414.

Baldwin, B. G., and M. J. Sanderson. 1998. Age and rate of diversification of
the Hawaiian silversword alliance (Compositae). Proc. Natl. Acad. Sci.
USA 95:9402–9406.

Barraclough, T. G., J. E. Hogan, and A. P. Vogler. 1999. Testing whether
ecological factors promote cladogenesis in an group of tiger beetles
(Coleoptera: Cicindelidae). Proc. R. Soc. Lond. B 266:1061–1067.

Burbrink, F. T., and R. A. Pyron. 2010. How does ecological opportunity in-
fluence rates of speciation, extinction and morphological diversification
in New World ratsnakes (Tribe Lampropeltini)? Evolution 64:934–943.

Burnham, K. P., and D. R. Anderson. 2003. Model selection and multimodel
inference, a practical information-theoretic approach. Springer, New
York.

Claramunt, S. 2002. Variación geogr´fica en Cranioleuca pyrrhophia y el
lı́mite con Cranioleuca obsoleta (Furnariidae). Ornitologı́a Neotropical
13:255–266.

———. 2010a. Discovering exceptional diversifications at continental scales:
the case of the endemic families of Neotropical suboscine passerines.
Evolution 64:2004–2019.

———. 2010b. Testing models of biological diversification: morphological
evolution and cladogenesis in the Neotropical Furnariidae (Aves: Passer-
iformes). Department of Biological Sciences. Louisiana State Univ.,
Baton Rouge, LA.

Claramunt, S., and A. Rinderknecht. 2005. A new fossil furnariid from the
Pleistocene of Uruguay, with remarks on nasal type, cranial kinetics, and
relationships of the extinct genus Pseudoseisuropsis. Condor 107:114–
127.

Cusimano, N., and S. S. Renner. 2010. Slowdowns in diversification rates
from real phylogenies may not be real. Syst. Biol. 59:458–464.

Drummund, A. J., and A. Rambaut. 2007. BEAST: Bayesian evolutionary
analysis by sampling trees. BMC Evol. Biol. 7:214.

Drummund, A. J., S. Y. W. Ho, M. J. Phillips, and A. Rambaut. 2006. Relaxed
phylogenetics and dating with confidence. PLoS Biol. 4:e88.

Esselstyn, J. A., R. M. Timm, and R. M. Brown. 2009. Do geological
or climatic processes drive speciation in dynamic archipelagos? The

tempo and mode of diversification in Southeast Asian shrews. Evolution
63:2595–2610.

Felsenstein, J. 2008. Comparative methods with sampling error and within-
species variation: contrasts revisited and revised. Am. Nat. 171:
713–725.

Figueiredo, F., C. Hoorn, P. van der ven, and E. Soares. 2009. Late Miocene
onset of the Amazonian River and the Amazon deep-sea fan: evidence
from the Foz do Amazonas Basin. Geology 37:619–622.

Fitzpatrick, J. W. 1982. Reviews: Taxonomy and geographical distribution of
the Furnariidae (Aves, Passeriformes) by Charles Vaurie. Auk 99:810–
813.
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